LabWindows ${ }^{\circledR} / \mathrm{CVI}$ Advanced Analysis Library Reference Manual

July 1996 Edition

Part Number 320686C-01
© Copyright 1994, 1996 National Instruments Corporation.
All rights reserved.

Internet Support

GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
Lookout: lookout.support@natinst.com
HiQ: hiq.support@natinst.com
VISA: visa.support@natinst.com
FTP Site: ftp.natinst.com
Web Address: www.natinst.com

Bulletin Board Support

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635551422
BBS France: 148651559

FaxBack Support

(512) 418-1111

Telephone Support (U.S.)

Tel: (512) 795-8248
Fax: (512) 794-5678

International Offices

Australia 039879 9422, Austria 0662457990 0, Belgium 0275700 20,
Canada (Ontario) 519622 9310, Canada (Québec) 514694 8521, Denmark 45762600 , Finland 90527 2321, France 1481424 24, Germany 08974131 30, Hong Kong 2645 3186, Italy 02 413091, Japan 035472 2970, Korea 02596 7456, Mexico 958000100793 , Netherlands 0348 433466, Norway 328484 00, Singapore 2265886, Spain 916400085 , Sweden 0873049 70, Switzerland 05620051 51, Taiwan 02377 1200, U.K. 01635523545

National Instruments Corporate Headquarters

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL Instruments shall be limited to the amount theretofore paid by the customer. National Instruments WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner's failure to follow the National Instruments installation, operation, or maintenance instructions; owner's modification of the product; owner's abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National Instruments Corporation.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the user or application designer. Any use or application of National Instruments products for or involving medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always continue to be used when National Instruments products are being used. National Instruments products are NOT intended to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

Contents

About This Manual xi
Organization of This Manual xi
Conventions Used in This Manual xi
Related Documentation xii
Customer Communication xiv
Chapter 1
Advanced Analysis Library Overview 1-1
Product Overview 1-1
The Advanced Analysis Library Function Panels 1-1
Reporting Analysis Errors 1-9
About the Fast Fourier Transform (FFT) 1-9
About Windowing 1-11
About Digital Filters 1-13
About Measurement Functions 1-17
About Curve Fitting 1-18
Chapter 2
Advanced Analysis Library Function Reference 2-1
Abs1D. 2-1
ACDCEstimator 2-1
Add1D 2-2
Add2D 2-3
AllocIIRFilterPtr 2-4
AmpPhaseSpectrum 2-5
ANOVA1Way 2-6
ANOVA2Way 2-11
ANOVA3Way 2-20
ArbitraryWave 2-30
AutoPowerSpectrum 2-31
BackSub 2-32
Bessel_CascadeCoef 2-33
Bessel_Coef. 2-35
BlkHarrisWin 2-36
BkmanWin 2-37
Bw_BPF 2-38
Bw_BSF 2-39
Bw_CascadeCoef 2-40
Bw_Coef. 2-41
Bw_HPF 2-42
Bw_LPF 2-43
CascadeToDirectCoef 2-44
Ch_BPF 2-45
Ch_BSF 2-46
Ch_CascadeCoef 2-47
Ch_Coef 2-49
Ch_HPF 2-50
Ch_LPF 2-51
Chirp 2-52
Clear1D 2-53
Clip 2-54
Contingency_Table 2-54
Convolve 2-58
Copy1D 2-59
Correlate 2-59
CosTaperedWin 2-60
CrossPowerSpectrum 2-61
CrossSpectrum 2-62
CxAdd 2-63
CxAdd1D 2-64
CxDiv 2-65
CxDiv1D 2-66
CxExp. 2-66
CxLinEv1D 2-67
CxLn 2-68
CxLog 2-68
CxMul 2-69
CxMul1D 2-70
CxPow 2-70
CxRecip 2-71
CxSqrt 2-72
CxSub 2-72
CxSub1D 2-73
Decimate 2-74
Deconvolve 2-75
Determinant 2-76
Difference 2-76
Div1D 2-77
Div2D 2-78
DotProduct 2-79
Elp_BPF 2-79
Elp_BSF 2-80
Elp_CascadeCoef 2-81
Elp_Coef 2-83
Elp_HPF 2-84
Elp_LPF 2-85
Equi_Ripple 2-86
EquiRpl_BPF 2-89
EquiRpl_BSF 2-91
EquiRpl_HPF 2-92
EquiRpl_LPF 2-93
ExBkmanWin 2-94
ExpFit 2-94
ExpWin 2-96
F_Dist 2-96
FFT 2-97
FHT 2-98
FIR_Coef 2-99
FlatTopWin 2-100
ForceWin 2-101
ForwSub 2-101
FreeIIRFilterPtr 2-102
GaussNoise 2-103
GenCosWin 2-104
GenLSFit 2-105
GenLSFitCoef 2-112
GetAnalysisErrorString 2-113
HamWin 2-114
HanWin 2-114
Histogram 2-115
IIRCascadeFiltering 2-116
IIRFiltering 2-118
Impulse 2-119
ImpulseResponse 2-120
Integrate 2-121
InvCh_BPF 2-122
InvCh_BSF 2-123
InvCh_CascadeCoef 2-124
InvCh_Coef 2-125
InvCh_HPF 2-126
InvCh_LPF 2-127
InvF_Dist 2-128
InvFFT 2-129
InvFHT 2-130
InvMatrix 2-131
InvN_Dist 2-132
InvT_Dist 2-133
InvXX_Dist 2-133
Ksr_BPF 2-134
Ksr_BSF 2-136
Ksr_HPF 2-137
Ksr_LPF 2-138
KsrWin 2-139
LinEqs 2-140
LinEv1D 2-141
LinEv2D 2-142
LinFit 2-143
LU 2-144
MatrixMul 2-145
MaxMin1D 2-146
MaxMin2D 2-147
Mean. 2-148
Median 2-149
Mode 2-149
Moment 2-150
Mul1D 2-151
Mul2D 2-152
N_Dist 2-153
Neg1D 2-153
NetworkFunctions 2-154
NonLinearFit 2-156
Normal1D 2-157
Normal2D 2-158
PolyEv1D 2-159
PolyEv2D 2-160
PolyFit 2-162
PolyInterp 2-163
PowerFrequencyEstimate 2-164
Prod1D 2-166
Pulse 2-167
PulseParam 2-168
QScale1D 2-170
QScale2D 2-170
Ramp 2-171
RatInterp 2-172
ReFFT 2-174
ReInvFFT 2-175
ResetIIRFilter 2-176
Reverse 2-177
RMS 2-177
SawtoothWave 2-178
Scale1D 2-179
Scale2D 2-180
ScaledWindow 2-181
Set1D 2-182
Shift 2-183
Sinc 2-184
SinePattern 2-185
SineWave 2-186
Sort 2-187
Spectrum 2-188
SpectrumUnitConversion 2-188
SpInterp 2-192
Spline 2-193
SquareWave 2-194
StdDev 2-196
Sub1D 2-196
Sub2D 2-197
Subset1D 2-198
Sum1D 2-199
Sum2D 2-199
T_Dist. 2-200
ToPolar 2-201
ToPolar1D 2-202
ToRect 2-203
ToRect1D 2-203
Trace 2-204
TransferFunction 2-205
Transpose 2-206
Triangle 2-206
TriangleWave 2-207
TriWin 2-208
Uniform 2-209
UnWrap1D 2-210
Variance 2-210
WhiteNoise 2-211
Wind_BPF 2-212
Wind_BSF 2-213
Wind_HPF 2-215
Wind_LPF 2-216
XX_Dist 2-218
Appendix A
Error Codes A-1
Appendix B
Customer Communication B-1
Glossary G-1
Index I-1

Figures

Figure 1-1. A Windowed Spectrum in the Continuous Case 1-12
Figure 1-2. Cascaded Filter Stages 1-15
Tables
Table 1-1. The Advanced Analysis Library Function Tree. 1-1
Table A-1. Advanced Analysis Library Error Codes, Sorted Alphabetically A-1
Table A-2. Advanced Analysis Library Error Codes, Sorted Numerically A-4
Equations
Equation 1-1. 1-11
Equation 1-2. 1-11
Equation 1-3. 1-12
Equation 1-4. 1-12
Equation 1-5. 1-12
Equation 1-6. 1-14
Equation 1-7. 1-15
Equation 2-1. 2-106
Equation 2-2. 2-107
Equation 2-3. 2-107
Equation 2-4. 2-108

About This Manual

The LabWindows/CVI Advanced Analysis Library Reference Manual describes the functions in the LabWindows/CVI Advanced Analysis Library. To use this manual effectively, you should be familiar with the material presented in the LabWindows/CVI User Manual, and with the LabWindows/CVI software. Please refer to the LabWindows/CVI User Manual for specific instructions on operating LabWindows/CVI.

Organization of This Manual

The LabWindows/CVI Advanced Analysis Library Reference Manual is organized as follows:

- Chapter 1, Advanced Analysis Library Overview, contains a brief product overview and general information about the Advanced Analysis Library functions and panels.
- Chapter 2, Advanced Analysis Library Function Reference, contains a brief explanation of each of the functions in the LabWindows/CVI Advanced Analysis Library. The LabWindows/CVI Advanced Analysis Library functions are arranged alphabetically.
- Appendix A, Error Codes, contains error codes returned by the Advanced Analysis Library functions.
- Appendix B, Customer Communication, contains forms you can use to request help from National Instruments or to comment on our products and manuals.
- The Glossary contains an alphabetical list and description of terms used in this manual, including acronyms, abbreviations, metric prefixes, mnemonics, and symbols.
- The Index contains an alphabetical list of key terms and topics in this manual, including the page where you can find each one.

Conventions Used in This Manual

The following conventions are used in this manual:

bold	Bold text denotes a parameter, menu item, return value, function panel item, or dialog box button or option.
italic	Italic text denotes emphasis, a cross reference, or an introduction to a key concept.
bold italic	Bold italic text denotes a note, caution, or warning.

monospace Text in this font denotes text or characters that you should literally enter from the keyboard. Sections of code, programming examples, and syntax examples also appear in this font. This font also is used for the proper names of disk drives, paths, directories, programs, subprograms, subroutines, device names, variables, filenames, and extensions, and for statements and comments taken from program code.
italic Italic text in this font denotes that you must supply the appropriate words or monospace values in the place of these items.
$<>\quad$ Angle brackets enclose the name of a key. A hyphen between two or more key names enclosed in angle brackets denotes that you should simultaneously press the named keys, for example, <Ctrl-Alt-Delete>.
» The » symbol leads you through nested menu items and dialog box options to a final action. The sequence File» Page Setup» Options » Substitute Fonts directs you to pull down the File menu, select the Page Setup item, select Options, and finally select the Substitute Fonts option from the last dialog box.
paths Paths in this manual are denoted using backslashes (\backslash) to separate drive names, directories, and files, as in, drivename\dir1name\dir2name\myfile.

Acronyms, abbreviations, metric prefixes, mnemonics, and symbols, and terms are listed in the Glossary.

Related Documentation

The following documents contain information that you may find helpful as you use advanced analysis functions.

- Baher, H. Analog \& Digital Signal Processing. New York: John Wiley \& Sons. 1990.
- Bates, D.M. and Watts, D.G. Nonlinear Regression Analysis and its Applications. New York: John Wiley \& Sons. 1988.
- Bracewell, R.N. "Numerical Transforms." Science. Science-248. 11 May 1990.
- Burden, R.L. \& Faires, J.D. Numerical Analysis. Third Edition. Boston: Prindle, Weber \& Schmidt. 1985.
- Chen, C.H. et al. Signal Processing Handbook. New York: Marcel Dekker, Inc. 1988.
- DeGroot, M. Probability and Statistics, 2nd ed. Reading, Massachusetts: Addison-Wesley Publishing Co. 1986.
- Dowdy, S. and Wearden, S. Statistics for Research, 2nd ed. New York: John Wiley \& Sons. 1991.
- Dudewicz, E.J. and Mishra, S.N. Modern Mathematical Statistics. New York: John Wiley \& Sons, 1988.
- Duhamel, P. et al. "On Computing the Inverse DFT." IEEE Transactions on ASSP. ASSP-34 (1986): 1 (February).
- Dunn, O. and Clark, V. Applied Statistics: Analysis of Variance and Regression, 2nd ed. New York: John Wiley \& Sons. 1987.
- Elliot, D.F. Handbook of Digital Signal Processing Engineering Applications. San Diego: Academic Press. 1987.
- Harris, Fredric J. "On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform," Proceedings of the IEEE-66 (1978)-1.
- Maisel, J.E. "Hilbert Transform Works With Fourier Transforms to Dramatically Lower Sampling Rates." Personal Engineering and Instrumentation News. PEIN-7 (1990): 2 (February).
- Miller, I. and Freund, J.E. Probability and Statistics for Engineers. Englewood Cliffs, N.J.: Prentice-Hall, Inc. 1987.
- Neter, J. et al. Applied Linear Regression Models. Richard D. Irwin, Inc. 1983.
- Neuvo, Y., Dong, C.-Y., and Mitra, S.K. "Interpolated Finite Impulse Response Filters," IEEE Transactions on ASSP. ASSP-32 (1984): 6 (June).
- O'Neill, M.A. "Faster Than Fast Fourier." BYTE. (1988) (April).
- Oppenheim, A.V. \& Schafer, R.W. Discrete-Time Signal Processing. Englewood Cliffs, New Jersey: Prentice Hall. 1989.
- Parks, T.W. and Burrus, C.S. Digital Filter Design. John Wiley \& Sons, Inc.: New York. 1987.
- Pearson, C.E. Numerical Methods in Engineering and Science. New York: Van Nostrand Reinhold Co. 1986.
- Press, W.H. et al. Numerical Recipes in C: The Art of Scientific Computing. Cambridge: Cambridge University Press. 1988.
- Rabiner, L.R. \& Gold, B. Theory and Application of Digital Signal Processing. Englewood Cliffs, New Jersey: Prentice Hall. 1975.
- Sorensen, H.V. et al. "On Computing the Split-Radix FFT." IEEE Transactions on ASSP. ASSP-34 (1986):1 (February).
- Sorensen, H.V. et al. "Real-Valued Fast Fourier Transform Algorithms." IEEE Transactions on ASSP. ASSP-35 (1987): 6 (June).
- Stoer, J. and Bulirsch, R. Introduction to Numerical Analysis. New York: Springer-Verlag. 1987.
- Vaidyanathan, P.P. Multirate Systems and Filter Banks. Englewood Cliffs, New Jersey: Prentice Hall. 1993.
- Wichman, B. and Hill, D. "Building a Random-Number Generator: A Pascal routine for very-long-cycle random-number sequences." BYTE, March 1987, pp 127-128.

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We are interested in the applications you develop with our products, and we want to help you if you have problems with them. To make it easy for you to contact us, this manual contains comment and technical support forms for you to complete. These forms are in Appendix B, Customer Communication, at the end of this manual.

Chapter 1

Advanced Analysis Library Overview

This chapter contains a brief product overview and general information about the Advanced Analysis Library functions and panels.

Product Overview

The LabWindows Advanced Analysis Library adds additional analysis functions to the standard LabWindows/CVI Analysis Library. The Advanced Analysis Library includes functions for signal generation, one-dimensional (1D) and two-dimensional (2D) array manipulation, complex operations, signal processing, statistics, and curve-fitting.

The Advanced Analysis Library Function Panels

The Advanced Analysis Library function panels are grouped in a tree structure according to the types of operations performed. The Advanced Analysis Library Function Tree is shown in Table 1-1.

The first- and second-level bold headings in the tree are the names of function classes and subclasses. Function classes and subclasses are groups of related function panels. The thirdlevel headings in plain text are the names of individual function panels. Each analysis function panel generates one analysis function call. The names of the corresponding analysis function calls are in bold italics to the right of the function panel names.

Table 1-1. The Advanced Analysis Library Function Tree

(continues)

Table 1-1. The Advanced Analysis Library Function Tree (Continued)

Sawtooth Wave	SawtoothWave
Sinc Waveform	Sinc
Sine Wave	SineWave
Square Wave	SquareWave
Triangle Wave	TriangleWave
Array Operations	
1D Operations	
1D Clear Array	Clear1D
1D Set Array	Set1D
1D Copy Array	Copy1D
1D Array Addition	Add1D
1D Array Subtraction	Sub1D
1D Array Multiplication	MullD
1D Array Division	Div1D
1D Absolute Value	Abs1D
1D Negative Value	Neg1D
1D Linear Evaluation	LinEv1D
1D Polynomial Evaluation	PolyEv1D
1D Scaling	Scale1D
1D Quick Scaling	QScale1D
1D Maximum \& Minimum	MaxMin1D
1D Sum of Elements	Sum1D
1D Product of Elements	Prod1D
1D Array Subset	Subset1D
1D Reverse Array Order	Reverse
1D Shift Array	Shift
1D Clip Array	Clip
1D Sort Array	Sort
1D Vector Normalization	NormallD
2D Operations	
2D Array Addition	Add2D
2D Array Subtraction	Sub2D
2D Array Multiplication	Mul2D
2D Array Division	Div2D
2D Linear Evaluation	LinEv2D
2D Polynomial Evaluation	PolyEv2D
2D Scaling	Scale2D
2D Quick Scaling	QScale2D
2D Maximum \& Minimum	MaxMin2D
2D Sum of Elements	Sum2D
2D Matrix Normalization	Normal2D

(continues)

Table 1-1. The Advanced Analysis Library Function Tree (Continued)

Complex Operations
 Complex Numbers

Complex Addition CxAdd
Complex Subtraction CxSub
Complex Multiplication CxMul
Complex Division CxDiv
Complex Reciprocal CxRecip
Complex Square Root CxSqrt
Complex Logarithm
Complex Natural Log
Complex Power
Complex Exponential
Rectangular to Polar
Polar to Rectangular
1D Complex Operations
1D Complex Addition
1D Complex Subtraction
1D Complex Multiplication
1D Complex Division
1D Complex Linear Evaluation
1D Rectangular to Polar
1D Polar to Rectangular
Signal Processing
Frequency Domain
FFT
Inverse FFT
Real Valued FFT
Real Valued Inverse FFT
Power Spectrum
FHT
Inverse FHT
Cross Spectrum
Time Domain
Convolution
Correlation
Integration
Differentiate
Pulse Parameters
Decimate
Deconvolve
Unwrap Phase

Table 1-1. The Advanced Analysis Library Function Tree (Continued)

IIR Digital Filters	
Cascade Filter Functions	
Bessel Cascade Coeff	Bessel_CascadeCoef
Butterworth Cascade Coeff	Bw_CascadeCoef
Chebyshev Cascade Coeff	Ch_CascadeCoef
Inv Chebyshev Cascade Coeff	InvCh_CascadeCoef
Elliptic Cascade Coeffs	Elp_CascadeCoef
IIR Cascade Filtering	IIRCascadeFiltering
Filter Information Utilities	
Allocate Filter Information	AllocIIRFilterPtr
Reset Filter Information	ResetIIRFilter
Free Filter Information	FreeIIRFilterPtr
Cascade to Direct Coefficients	CascadeToDirectCoef
One-step Filter Functions	
Lowpass Butterworth	$B w_{-} L P F$
Highpass Butterworth	$B w_{-}$HPF
Bandpass Butterworth	$B w_{\sim}$ BPF
Bandstop Butterworth	$B w_{-} B S F$
Lowpass Chebyshev	Ch_LPF
Highpass Chebyshev	Ch_HPF
Bandpass Chebyshev	Ch_BPF
Bandstop Chebyshev	Ch_BSF
Lowpass Inverse Chebyshev	InvCh_LPF
Highpass Inverse Chebyshev	InvCh_HPF
Bandpass Inverse Chebyshev	InvCh_BPF
Bandstop Inverse Chebyshev	$\boldsymbol{I n v} \boldsymbol{C h} _$BSF
Lowpass Elliptic	Elp_LPF
Highpass Elliptic	Elp_HPF
Bandpass Elliptic	Elp_BPF
Bandstop Elliptic	Elp_BSF
Old-Style Filter Functions	
Bessell Coefficients	Bessell_Coef
Butterworth Coefficients	Bw_Coef
Chebyshev Coefficients	Ch_Coef
Inverse Chebyshev Coefficients	InvCh_Coef
Elliptic Coefficients	Elp_Coef
IIR Filtering	IIRFiltering
FIR Digital Filters	
Lowpass Window Filters	Wind_LPF
Highpass Window Filters	Wind_HPF
Bandpass Window Filters	Wind_BPF

(continues)

Table 1-1. The Advanced Analysis Library Function Tree (Continued)

Bandstop Window Filters	Wind_BSF
Lowpass Kaiser Window	Ksr_LPF
Highpass Kaiser Window	Ksr_HPF
Bandpass Kaiser Window	Ksr_BPF
Bandstop Kaiser Window	Ksr_BSF
General Equi-Ripple FIR	Equi_Ripple
Lowpass Equi-Ripple FIR	EquiRpl_LPF
Highpass Equi-Ripple FIR	EquiRpl_HPF
Bandpass Equi-Ripple FIR	EquiRpl_BPF
Bandstop Equi-Ripple FIR	EquiRpl_BSF
FIR Coefficients	FIR_Coef
Windows	
Triangular Window	TriWin
Hanning Window	HanWin
Hamming Window	HamWin
Blackman Window	BkmanWin
Kaiser Window	KsrWin
Blackman-Harris Window	BlkHarrisWin
Tapered Cosine Window	CosTaperedWin
Exact Blackman Window	ExBkmanWin
Exponential Window	ExpWin
Flat Top Window	FlatTopWin
Force Window	ForceWin
General Cosine Window	GenCosWin
AC/DC Estimator	ACDCEstimator
Amplitude/Phase Spectrum	AmpPhaseSpectrum
Auto Power Spectrum	AutoPowerSpectrum
Cross Power Spectrum	CrossPowerSpectrum
Impulse Response	ImpulseResponse
Network Functions	NetworkFunctions
Power Frequency Estimate	PowerFrequencyEstimate
Scaled Window	ScaledWindow
Spectrum Unit Conversion	SpectrumUnitConversion
Transfer Function	TransferFunction
Statistics	
Basics	
Mean	Mean
Standard Deviation	StdDev
Variance	Variance
Root Mean Squared Value	RMS
Moments about the Mean	Moment

(continues)

Table 1-1. The Advanced Analysis Library Function Tree (Continued)

Median	Median
Mode	Mode
Histogram	Histogram
Probability Distributions	
Normal Distribution	N_Dist
T-Distribution	T_Dist
F-Distribution	F_Dist
Chi-Square Distribution	XX_Dist
Inv. Normal Distribution	InvN_Dist
Inv. T-Distribution	InvT_Dist
Inv. F-Distribution	InvF_Dist
Inv. Chi-SquareDist.	InvXX_Dist
Analysis of Variance	
One-way ANOVA	ANOVA1Way
Two-way ANOVA	ANOVA2Way
Three-way ANOVA	ANOVA3Way
Nonparametric Statistics	
Contingency Table	Contingency_Table
Curve Fitting	
Linear Fit	LinFit
Exponential Fit	ExpFit
Polynomial Fit	PolyFit
General Least Squares Fit	GenLSFit
Non-Linear Fit	NonLinear Fit
OldStyle Function	
Gen Least Squares Fit Coeff Interpolation	GenLSFitCoef
Polynomial Interpolation	PolyInterp
Rational Interpolation	RatInterp
Spline Interpolation	SpInterp
Spline Interpolant	Spline
Vector \& Matrix Algebra	
Dot Product	DotProduct
Matrix Multiplication	MatrixMul
Matrix Inversion	InvMatrix
Transpose	Transpose
Determinant	Determinant
Trace	Trace
Solution of Linear Equations	LinEqs
LU Decomposition	$\boldsymbol{L U}$
Forward Substitution	ForwSub
Backward Substitution	BackSub
Get Error String	GetAnalysisErrorString

The classes and subclasses in the function tree are described as follows.

- The Signal Generation function panels initialize arrays with predefined patterns.
- The Array Operations function panels perform arithmetic operations on 1D and 2D arrays.
- 1D Operations, a subclass of Array Operations, contains function panels that perform 1D array arithmetic.
- 2D Operations, a subclass of Array Operations, contains function panels that perform 2D array arithmetic.
- The Complex Operations function panels perform complex arithmetic operations. These function panels can operate on complex scalars or 1D arrays. The real and imaginary parts of complex numbers are processed separately.
- Complex Numbers, a subclass of Complex Operations, contains function panels that perform scalar complex arithmetic.
- 1D Complex Operations, a subclass of Complex Operations, contains function panels that perform complex arithmetic on 1D complex arrays.
- The Signal Processing function panels perform data analysis in the frequency domain, time domain, or by using digital filters.
- Frequency Domain, a subclass of Signal Processing, contains function panels that perform transformations between the time domain and the frequency domain, and perform analysis in the frequency domain.
- Time Domain, a subclass of Signal Processing, contains function panels that perform direct time series analysis of signals.
- IIR Digital Filters, a subclass of Signal Processing, contains function panels that perform infinite impulse response (IIR) digital filtering on signals by mapping analog specifications into digital specifications. This subclass contains Butterworth, Chebyshev, inverse Chebyshev, and elliptic filters.
- FIR Digital Filters, a subclass of Signal Processing, contains function panels that perform the designs of finite impulse response (FIR) filters. These functions do not actually perform the digital filtering. This subclass contains window and equi-ripple FIR filters.
- Windows, a subclass of Signal Processing, contains function panels that create windows that are frequently used to smooth data and reduce truncation effects in data acquisition applications.
- The Measurement function panels perform spectrum analysis using real units such as hertz and seconds.
- The Statistics function panels perform basic statistics functions.
- Basics, a subclass of Statistics, contains function panels that use various common methods to describe a set of data.
- Probability Distributions, a subclass of Statistics, contains function panels that operate as cumulative distribution functions from various probability distributions, and other function panels that operate as corresponding inverse functions.
- Analysis of Variance, a subclass of Statistics, contains function panels that perform various analysis of variance in various statistical models.
- Nonparametric Statistics, a subclass of Statistics, contains a function panel that analyzes data without assuming that the data is normally distributed.
- The Curve Fitting function panels perform curve fitting using least squares techniques. Linear, exponential, polynomial, and nonlinear fits are available.
- The Interpolation function panels take a set of points at which a function is known and guess the value the function takes at some specific intermediate point.
- The Vector \& Matrix Algebra function panels perform vector and matrix operations. Vectors and matrices are represented by 1D and 2D arrays, respectively.

The online help with each panel contains specific information about operating each function panel.

Hints For Using Advanced Analysis Function Panels

With the analysis function panels, you can interactively manipulate scalars and arrays of data. You will often find it helpful to use the Advanced Analysis Library function panels in conjunction with the User Interface Library functions panels to view the results of analysis routines. When using the Advanced Analysis Library function panels, keep the following things in mind:

- The speed with which analysis functions are performed is greatly affected by the computer on which you are operating LabWindows/CVI. A numeric coprocessor can greatly decrease the execution time of floating-point computations. If you are using an Advanced Analysis Library function panel and nothing seems to happen for an inordinate amount of time, keep the constraints of your hardware in mind.
- LabWindows/CVI can perform many analysis routines for arrays in place; that is, input and output values are stored in the same array. This is important to remember when you are processing large amounts of data. Large double-precision arrays consume a lot of memory. If the results you want do not require that you keep the original array or intermediate arrays of data, perform analysis operations in place where possible.
- The Interactive window maintains a record of generated code. If you forget to keep the code from a function panel, you can cut and paste code between the Interactive and Program windows.

Reporting Analysis Errors

Each analysis function returns an integer error code. If the function is properly executed, the function returns a zero. Otherwise, an appropriate error value is returned.

The return value will correspond to one of the enumeration values of the type AnalysisLibErrType declared in the header file analysis.h. The analysis functions are declared in the header file with this return type so that the function panel controls for return values will display the symbolic name instead of the integer value of the error code. By declaring a variable with the type AnalysisLibErrType, the Variables window displays its value as a symbolic name instead of as an integer.

You can find a list of error codes in Appendix A, Error Codes.

About the Fast Fourier Transform (FFT)

The functions in the Frequency Domain subclass are based upon the discrete implementation and optimization of the Fourier Transform integral. The Discrete Fourier Transform (DFT) of a complex sequence X containing n elements is obtained using the following formula:

$$
Y_{i}=\sum_{k=0}^{n-1} X_{k} * \mathrm{e}^{-\mathrm{j} 2 \pi i k / n}, \quad \text { for } \mathrm{i}=0,1, \ldots, \mathrm{n}-1
$$

where Y_{i} is the ith element of the DFT of X and $j=\sqrt{-1}$
The DFT of X also results in a complex sequence Y of n elements. Similarly, the Inverse Discrete Fourier Transform (IDFT) of a complex sequence Y containing n elements is obtained using the following formula.

$$
X_{i}=(1 / n) \sum_{k=0}^{n-1} Y_{k} * e^{j 2 p i k / n}, \quad \text { for } \mathrm{i}=0,1, \ldots, \mathrm{n}-1
$$

where X_{i} is the ith element of the IDFT of Y and $j=\sqrt{-1}$

The discrete implementation of the DFT is a numerically intense process. However, it is possible to implement a fast algorithm when the size of the sequence is a power of two. These algorithms are known as FFTs, and can be found in many introductory texts to digital signal processing (DSP).

The current algorithm implemented in the LabWindows/CVI Advanced Analysis Library is known as the Split-Radix algorithm. This algorithm is highly efficient because it minimizes the number of multiplications, has the form of the Radix-4 algorithm, and the efficiency of the Radix-8 algorithm. The resulting complex FFT sequence has the conventional DSP format as described here.

If there are n number of elements in the complex sequence and $k=n / 2$, then the output of the FFT is organized as follows:

Y_{0}	DC component
Y_{1}	Positive first harmonic
Y_{2}	Positive second harmonic
\vdots	\vdots
Y_{k-1}	Positive k-1 harmonic
Y_{k}	Nyquist frequency
Y_{k+1}	Negative k-1 harmonic
\vdots	\vdots
Y_{n-2}	Negative second harmonic
Y_{n-1}	Negative first harmonic

The following conventions and restrictions apply to the functions in the Frequency Domain section:

- All arrays must be a power of two: $n=2^{m}, m=1,2,3, \ldots, 12$.
- Complex sequences are manipulated using two arrays. One array represents the real elements. The other array represents the imaginary elements.

The following notation is used to describe the FFT operations performed in the Frequency Domain class:

- $Y=F F T\{X\}$, the sequence Y is the FFT of the sequence X.
- $\quad Y=F F T^{-1}\{X\}$, the sequence Y is the inverse FFT of the sequence X.

X is usually a complex array but can be treated as a real array.

About Windowing

Almost every application requires you to use finite length signals. This requires that continuous signals be truncated, using a process called windowing.

The simplest window is a rectangular window. Because this window requires no special effort it is commonly referred to as the no window option. Remember, however, that a discrete signal and its spectrum is always affected by a window. Let x_{n} be a digitized timedomain waveform that has a finite length of $n . w_{n}$ is a window sequence of n points. The windowed output is calculated as follows:

$$
\begin{equation*}
y_{i}=x_{i} * w_{i} \tag{1-1}
\end{equation*}
$$

If X, Y, and W are the spectra of x, y, and w , respectively, the time-domain multiplication in equation (1-1) is equivalent to the convolution shown as follows:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{k}}=\mathrm{X}_{\mathrm{k}} \Theta \mathrm{~W}_{\mathrm{k}} \tag{1-2}
\end{equation*}
$$

Convolving with the window spectrum always distorts the original signal spectrum in some way. A window spectrum consists of a big main lobe and several side lobes.

The main lobe is the primary cause of lost frequency resolution. When two signal spectrum lines are too close to each other, they may fall in the width of the main lobe, causing the output of the windowed signal spectrum to have only one spectrum line. Use a window with a narrower main lobe to reduce the loss of frequency resolution. It has been shown that a rectangular window has the narrowest main lobe, so that it provides the best frequency resolution.

The side lobes of a window function affect frequency leakage. A signal spectrum line will leak into the adjacent spectrum if the side lobes are large. Once again, the leakage results from the convolution process. Select a window with relatively smaller side lobes to reduce spectral leakage. Unfortunately, a narrower main lobe and smaller side lobes are mutually exclusive. For this reason, selecting a window function is application dependent. An example of a windowed spectrum in the continuous case is shown in Figure 1-1.

Figure 1-1. A Windowed Spectrum in the Continuous Case
The original signal spectrum is convolved with the window spectrum and the output is a smeared version of the original signal spectrum. In this example, you can still see four distinctive peaks from the original signal, but each peak is smeared and the frequency leakage effect is clear.

Window definitions used in National Instruments analysis libraries are designed in such a way that the window operations in the time domain are exactly equivalent to the operations of the same window in the frequency domain. To meet this requirement, the windows are not symmetrical in the time domain, that is:

$$
\begin{equation*}
\mathrm{w}_{0} \neq \mathrm{w}_{\mathrm{N}-1} \tag{1-3}
\end{equation*}
$$

where N is the window length. They are usually symmetrical in the frequency domain, however. For example, the Hamming window definition uses the formula:

$$
\begin{equation*}
w_{i}=0.54-0.46 \cos (2 \pi \mathrm{i} / N) \tag{1-4}
\end{equation*}
$$

Other manufacturers may use a slightly different definition, such as:

$$
\begin{equation*}
w_{i}=0.54-0.46 \cos (2 \pi \mathrm{i} /(N-1)) \tag{1-5}
\end{equation*}
$$

The difference is small if N is large.
Equation (1-4) is not symmetrical in the time domain, but it ensures that the time domain windowing is equivalent to the frequency domain windowing. If you want to have a perfectly symmetrical sequence in the time domain, you must write your own windowing function using formula (1-5).

The choice of a window depends on the application. For most applications, the Hamming or Hanning windows deliver good performance.

About Digital Filters

There are two types of digital filters in the LabWindows/CVI Advanced Analysis Library: Finite Impulse Response (FIR) filters and Infinite Impulse Response (IIR) filters. FIR filters have a linear phase response. IIR filters generally have a nonlinear phase response, but offer much better amplitude response.

The choice of a particular type of filter depends upon the application. If you desire a linear phase response, choose one of the FIR filters. If performance and better amplitude response is more important, chose an IIR filter. No matter what type of filter you choose, enter a sampling frequency and other cutoff frequencies when designing your filter. You can design a digital filter using a normalized sampling frequency. The LabWindows/CVI Advanced Analysis Library provides a sampling frequency parameter so that you don't need to normalize other frequencies.

FIR Filters

The FIR filter is a set of filter coefficients that alters the signal spectrum when convolving with the signal. Let c_{K} be the filter coefficients, x_{N} be the input signal, and y_{N} be the output in the following formula:

$$
y_{i}=\sum_{k=0}^{K-l} x_{i-k} * c_{k}, \quad \mathrm{i}=0,1, \ldots, \mathrm{~N}-1
$$

LabWindows/CVI implements the formula using the convolution function Convolve. The purpose of an FIR filter is to design the coefficients c_{κ}. Remember that no filtering is actually performed in an FIR filter function. You must subsequently call Convolve to perform the filtering. The advantage of doing this is that once you have obtained the filter coefficients, you can use them repeatedly without redesigning the filter.

If you have never used an FIR filter before, start with a window FIR filter. These filters are easy to design, though other techniques may design a better filter with the same number of coefficients.

Choose the window to be used in a window FIR filter with the parameter WindType.
WindType determines the amount of attenuation the window filter can achieve. It also determines the transitional bandwidth of the window filter. The transitional bandwidth is defined as the frequency range from the specified cutoff frequency to the point where the desired attenuation is obtained. A bigger transitional bandwidth usually gives better
attenuation. Use a Kaiser window FIR filter for choosing windows that are not available from WindType.

If you are experienced in using filters and you want to design an optimal FIR filter, use the LabWindows/CVI Advanced Analysis Library Equi_Ripple function. These filters are based on the general Parks-McClellan algorithm, that in turn is based on an alternation theorem in the polynomial approximation. As the name suggests, the frequency response of an Equi_Ripple filter has equal ripples within each specified frequency band. The ripples can be different in different bands depending on the weighting factors.

You have to specify more parameters when using Equi_Ripple filters. For each frequency band, specify the starting and ending points, the amplitude response and a weighting factor associated with the amplitude response of that band. A weighting factor of 1 is usually sufficient for all bands, but you can select different weighting factors. A bigger weighting factor results in a smaller ripple in the corresponding frequency band; a smaller weighting factor results in a larger ripple.

If you want to design an optimal FIR multiband filter, (lowpass, highpass, bandpass and bandstop), but do not want to specify the weighting factor, use EquiRpl_LPF, EquiRpl_HPF, EquiRpl_BPF, and EquiRpl_BSF. These filters call Equi_Ripple internally but have simplified input parameters.

Caution: The Equi_Ripple filter design does not always converge. In some cases, it will fail and give erroneous results. It is extremely important that you verify the filter design after obtaining the filter coefficients.

IIR Filters

Mathematically, an IIR digital filter assumes the following form:

$$
\begin{equation*}
y_{i}=\frac{1}{a_{0}}\left(\sum_{j=0}^{N_{b}-1} b_{j} x_{i-j}-\sum_{k=1}^{N_{a}-1} a_{k} y_{i-k}\right) \tag{1-6}
\end{equation*}
$$

where a_{k} and b_{k} are the filter coefficients. The current filter output y_{i} depends upon the current and previous values x_{i-k} and previous output y_{i-k}. If $y_{i} \neq 0$, its effect on the subsequent points persists indefinitely. This is why these filters are called infinite impulse response filters.

Filters implemented using the structure defined by equation (1-6) directly are known as direct form IIR filters. Direct form implementations are often sensitive to errors introduced by coefficient quantization and by computational, precision limits. Additionally, a filter designed to be stable can become unstable with increasing coefficient length, which is proportional to filter order.

A less sensitive structure can be obtained by breaking up the direct form transfer function into lower order sections, or filter stages. The direct form transfer function of the filter given by equation (1-6) (with $a_{o}=1$) can be written as a ratio of z transforms, as follows:

$$
\begin{equation*}
H(z)=\frac{b_{0}+b_{1} z^{-1}+\ldots+b_{N_{b}-1} z^{-\left(N_{b}-1\right)}}{1+a_{1} z^{-1}+\ldots+a_{N_{a}-1} z^{-\left(N_{a}-1\right)}} \tag{1-7}
\end{equation*}
$$

By factoring equation (1-7) into second-order sections, the transfer function of the filter becomes a product of second-order filter functions

$$
H(z)=\prod_{k=1}^{N_{s}} \frac{b_{0 k}+b_{1 k} z^{-1}+b_{2 k} z^{-2}}{1+a_{1 k} z^{-1}+a_{2 k} z^{-2}}
$$

where $N_{s}=\left\lfloor N_{a} / 2\right\rfloor$ is the largest integer $\leq N_{a} / 2$, and $N_{a} \geq N_{b}$. This new filter structure can be described as a cascade of second-order filters.

Figure 1-2. Cascaded Filter Stages
Each individual stage is implemented using the direct form II filter structure because it requires a minimum number of arithmetic operations and a minimum number of delay elements (internal filter states). Each stage has one input, one output, and two past internal states $\left(s_{k}[i-1]\right.$ and $\left.s_{k}[i-2]\right)$.

If n is the number of samples in the input sequence, the filtering operation proceeds as in the following equations:
$y_{0}[i]=x[i]$,
$s_{k}[i]=y_{k-l}[i-1]-a_{l k} s_{k}[i-1]-a_{2 k} s_{k}[i-2], k=1,2, \ldots, N_{s}$
$y_{k}[i]=b_{o k} s_{k}[i]+b_{l k} s_{k}[i-1]+b_{2 k} s_{k}[i-2], k=1,2, \ldots, N_{s}$
$y[i]=y_{N_{s}}[i]$
for each sample $i=0,1,2, \ldots, n-1$.

For filters with a single cutoff frequency (lowpass and highpass), second-order filter stages can be designed directly. The overall IIR lowpass or highpass filter contains cascaded second-order filters.

For filters with two cutoff frequencies (bandpass and bandstop), fourth-order filter stages are a more natural form. The overall IIR bandpass or bandstop filter is cascaded fourth-order filters. The filtering operation for fourth-order stages proceeds as in the following equations:

$$
\begin{aligned}
& y_{0}[i]=x[i], \\
& s_{k}[i]=y_{k-1}[i-1]-a_{l k} s_{k}[i-1]-a_{2 k} s_{k}[i-2]-a_{3 k} s_{k}[i-3]-a_{4 k} s_{k}[i-4] \\
& k=1,2, \ldots, N_{s} \\
& y_{k}[i]=b_{o k} s_{k}[i]+b_{1 k} s_{k}[i-1]+b_{2 k} s_{k}[i-2]+b_{3 k} s_{k}[i-3]+b_{4 k} s_{k}[i-4] \text {, } \\
& k=1,2, \ldots, N \\
& y[i]=y_{N_{s}}[i] .
\end{aligned}
$$

Notice that in the case of fourth-order filter stages, $N_{s}=\left\lfloor\left(N_{a}+1\right) / 4\right\rfloor$.

The IIR filters provided in the LabWindows/CVI Advanced Analysis Library are derived from analog filters. There are four major types of IIR filters:

- Butterworth filters
- Chebyshev filters
- Inverse Chebyshev filters
- Elliptic filters

Lowpass, highpass, bandpass and bandstop filters are designed for each type of filter. The frequency response of a Butterworth filter is characterized by a smooth response at all frequencies and a monotonic decrease from the specified cut-off frequencies. Butterworth filters are maximally flat in the passband and zero in the stopband. The rolloff between the passband and stopband is slow, so that a lower order Butterworth filter does not provide a good approximation of an ideal filter.

Chebyshev filters have equal ripples in the passband and a monotonically decreasing magnitude response in the stopband. These filters have much sharper rolloffs than Butterworth filters. The inverse Chebyshev filters are similar to Chebyshev filters, except that the ripple occurs in the stopband and the frequency response is flat in the passband. If ripples are allowable in both the passband and the stopband, use elliptic filters. Elliptic filters have the sharpest rolloffs for the same order compared with Butterworth or Chebyshev filters.

About Measurement Functions

Measurement functions perform DFT-based and FFT-based analysis with signal acquisition for frequency measurement applications as seen in typical frequency measurement instruments such as dynamic signal analyzers.

Several measurement functions perform commonly-used time domain to frequency domain transformations such as amplitude and phase spectrum, signal power spectrum, network transfer function, and so on. Other supportive measurement functions perform scaled timedomain windowing and power and frequency estimation, among other functions.

You can use the measurement functions for the following applications.

- Spectrum analysis applications
- Amplitude and phase spectrum
- Power spectrum
- Scaled time domain window
- Power and frequency estimate
- Network (frequency response) and dual channel analysis applications
- Transfer function
- Impulse response function
- Network functions (including coherence)
- Cross power spectrum

The DFT, FFT, and power spectrum are useful for measuring the frequency content of stationary or transient signals. The FFT provides the average frequency content of the signal over the entire time that the signal was acquired. For this reason, you use the FFT mostly for stationary signal analysis (when the signal is not significantly changing in frequency content over the time that the signal is acquired), or when you want only the average energy at each frequency line. A large class of measurement problems falls in this category. For measuring frequency information that changes during the acquisition, you should use joint timefrequency analysis.

The measurement functions are built on top of the signal processing functions and have the following characteristics that model the behavior of traditional benchtop frequency analysis instruments.

- Assumed Real-world time-domain signal input.
- Outputs in magnitude and phase, scaled in units where appropriate, ready for immediate graphing.
- Single-sided spectrums from DC to $\frac{\text { Sampling Frequency }}{2}$.
- Sampling period to frequency interval conversion for graphing with appropriate X -axis units (in Hertz).
- Corrections for the windows being used applied where appropriate.
- Scaled Windows; Each window gives same peak spectrum amplitude result within its amplitude accuracy constraints.
- Viewing of power or amplitude spectrum in various unit formats including decibels and spectral density units $\left(V^{2} / H z, V / \sqrt{H z}\right)$ and so on.

About Curve Fitting

The algorithm used to find the best curve fit in the Curve Fitting class is the Least Squares method. The purpose of the algorithm is to find the curve coefficients a, which minimize the squared error $\mathrm{e}(\mathrm{a})$ in the following formula:

$$
e(a)=\sum_{i}\left|Y_{i}-f\left(X_{i}, a\right)\right|^{2}
$$

where $f\left(X_{i}, a\right)$ is the function representing the desired curve.
You can find the coefficient a by solving the linear system of equations generated by the following formula:

$$
\frac{\partial}{\partial \mathrm{a}} \mathrm{e}(\mathrm{a})=0
$$

Given a set of n sample points (x, y) represented by the sequences X and Y , the curve-fitting functions determine the coefficients that best represent the data. The best fit Z is an array of expected values given the coefficients and the X set of values. Thus you can express Z as a function of X and the following coefficients:

$$
Z=f(X, a)
$$

When you have established the best fit values, you can obtain the mean squared error (mse) by applying the following formula.

$$
m s e=\sum_{i=0}^{n-1}\left(Z_{i}-Y_{i}\right)^{2} / n
$$

Chapter 2
 Advanced Analysis Library Function Reference

This chapter contains a brief explanation of each of the functions in the LabWindows/CVI Advanced Analysis Library. The LabWindows/CVI Advanced Analysis Library functions are arranged alphabetically.

Abs1D

int status $=$ Abs1D (double $\mathbf{x}[$], int \mathbf{n}, double $\mathbf{y}[])$;

Purpose

Finds the absolute value of the \mathbf{x} input array. The operation can be performed in place; that is, \mathbf{x} and \mathbf{y} can be the same array.

Parameters

Input	\mathbf{x} \mathbf{n}	double-precision array integer	input array number of elements
Output	\mathbf{y}	double-precision array	absolute value of input array

Return Value

status	integer	refer to error codes in Appendix A

ACDCEstimator

```
int status = ACDCEstimator (double x [ ], int n, double *acEstimate,
                        double *dcEstimate);
```


Purpose

Computes an estimation of the AC and DC contents of the input signal. \mathbf{x} is the input signal, usually in volts.
acEstimate (Vrms) is the estimate of the input signal AC content in volts rms, if the input signal is in volts.
dcEstimate (V) is the estimate of the input signal DC content in volts, if the input signal is in volts.

Parameters

Input	\mathbf{x}	double-precision array	contains the time-domain signal, usually in volts. At least three cycles of the signal must be contained in this array for a valid estimate. number of elements in the input array.
Output	$\mathbf{a c E s t i m a t e}$	double-precision	contains the estimate of the AC level of the input signal in volts rms if the input signal is volts. contains the estimate of the DC level of the input signal in the same units as the input signal.

Return Value

status	integer	refer to error codes in Appendix A

Add1D

int status = Add1D (double $\mathbf{x}[$], double $\mathbf{y}[$], int n, double z []);

Purpose

Adds one-dimensional (1D) arrays. The $\mathrm{i}^{\text {th }}$ element of the output array is obtained using the following formula.

$$
z_{i}=\mathrm{x}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}}
$$

The operation can be performed in place; that is, \mathbf{z} can be the same array as either \mathbf{x} or \mathbf{y}.

Parameters

Input	\mathbf{x}	double-precision array double-precision array integer	input array input array number of elements to be added
Output	\mathbf{z}	double-precision array	result array

Return Value

status	integer	refer to error codes in Appendix A

Add2D

int status $=\mathbf{A d d} 2 \mathrm{D}\left(\operatorname{void} * \mathbf{x}, \operatorname{void}{ }^{*} \mathbf{y}\right.$, int \mathbf{n}, int \mathbf{m}, void $\left.* \mathbf{z}\right)$;

Purpose

Adds two-dimensional (2D) arrays. The $\left(\mathrm{i}^{\text {th }}, \mathrm{j}^{\text {th }}\right)$ element of the output array is obtained using the following formula.

$$
z_{i, j}=x_{i, j}+y_{i, j}
$$

The operation can be performed in place; that is, \mathbf{z} can be the same array as either \mathbf{x} or \mathbf{y}.

Parameters

Input	\mathbf{x}	double-precision 2D array double-precision 2D array integer	input array input array number of elements in first dimension number of elements in second dimension
Output	\mathbf{m}	integer	double-precision 2D array
result array			

Return Value

status	integer	refer to error codes in Appendix A

AllocIIRFilterPtr

IIRFilterPtr filterInformation = AllocIIRFilterPtr (int type, int order);

Purpose

Allocates and initializes the filterInformation structure, returning a pointer to the filter structure for use with the IIR cascade filter coefficient design calls.

You input the type of the filter (lowpass, highpass, bandpass, or bandstop) and the order. This function will allocate the filter structure as well as the internal coefficient arrays and internal filter state array.

Parameters

Input	type	integer	Controls the filter type of IIR filter coefficients. LOWPASS = (default) HIGHPASS = 1 BANDPASS = 2
	order	integer	BANDSTOP $=3$ Specifies the order of the IIR filter. Default Value: 3

Return Value

filterInformation	IIRFilterPt r	Pointer to the filter structure. When an error occurs, filterInformation is zero.

Parameter Discussion

filterInformation is the pointer to the filter structure which contains the filter coefficients and the internal filter information. Call this function to allocate filterInformation before calling one of the cascade IIR filter design functions.

The definition of the filter structure is as follows:

```
typedef struct {
    intnum type; /* type of filter (lp,hp,bp,bs) */
    intnum order; /* order of filter */
    intnum reset; /* 0 - don't reset, 1 - reset */
    intnum na; /* number of a coefficients */
    floatnum *a; /* pointer to a coefficients */
    intnum nb; /* number of b coefficients */
    floatnum *b; /* pointer to b coefficients */
    intnum ns; /* number of internal states */
    floatnum *s; /* pointer to internal state array */
    } *IIRFilterPtr;
```


AmpPhaseSpectrum

```
int status = AmpPhaseSpectrum (double x [ ], int n, int unwrap, double dt,
    double ampSpectrum [], double
    phaseSpectrum [ ], double *df);
```


Purpose

Computes the single-sided, scaled amplitude and phase spectra of a time-domain signal, X . The amplitude spectrum is computed as

$$
|F F T(X) / n|
$$

and is converted to single-sided form. The phase spectrum is computed as
phase[FFT(X)]
and is also converted to single-sided form.

Parameters

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { Input } & \mathbf{x} & \begin{array}{l}\text { double-precision array } \\
\text { integer }\end{array} & \begin{array}{l}\text { Contains the time-domain signal. } \\
\text { The number of elements in the input } \\
\text { array. Valid Values: Powers of } 2 .\end{array}
$$

Controls the unwrapping of the phase

spectrum.\end{array}\right\}\)| Valid values for unwrap: |
| :--- |
| $1: \quad$ enable phase unwrapping |
| $0:$disable phase unwrapping
 $(-\pi \leq$ phase $\leq+\pi)$. |
| |

(continues)

Parameters (Continued)

Output	ampSpectrum	double-precision array	ampSpectrum is the single-sided amplitude spectrum magnitude in volts RMS if the input signal is in volts. If the input signal is not in volts, the results are in input signal units RMS. This array must be at least $\mathbf{n} / 2$ elements long. PhaseSpectrum is the single-sided phase spectrum in radians. This array must be at least $\mathbf{n} / 2$ elements long. phaseSpectrum hertz, if the frequency interval, in
double-precision array			
$* \mathbf{d f}=1 /(\mathbf{n} * \mathbf{d t})$			

Return Value

status	integer	refer to error codes in Appendix A

ANOVA1Way

```
int status = ANOVA1Way (double y [ ], int level [ ], int n, int k, double *ssa,
    double *msa, double *f, double *sig, double *sse,
    double *mse, double *tss);
```


Purpose

Takes an array of experimental observations made at various levels of some factor (with at least one observation per factor) and performs a one-way analysis of variance in the fixed effect model.

The one-way analysis of variance is a test to determine whether the level of the factor has an effect on the experimental outcome.

Parameters

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { Input } & \begin{array}{l}\text { y } \\
\text { level } \\
\mathbf{n}\end{array} & \begin{array}{l}\text { double-precision array } \\
\text { integer array } \\
\text { integer } \\
\text { integer }\end{array} & \begin{array}{l}\text { experimental observations } \\
\text { the it element tells in what level of } \\
\text { the factor the it observation falls } \\
\text { the total number of observations } \\
\text { the total number of levels of the } \\
\text { factor }\end{array} \\
\hline \text { Output } & \begin{array}{l}\text { ssa } \\
\mathbf{m s a} \\
\mathbf{f} \\
\text { sig }\end{array} & \begin{array}{l}\text { double-precision } \\
\text { double-precision } \\
\text { double-precision } \\
\text { double-precision }\end{array} & \begin{array}{l}\text { sum of squares due to the factor } \\
\text { mean square due to the factor } \\
\text { calculated F-value } \\
\text { the level of significance at which } \\
\text { the null hypothesis must be } \\
\text { rejected } \\
\text { sum of squares due to random } \\
\text { fluctuation } \\
\text { mean square due to random }\end{array}
$$

fluctuation

total sum of squares\end{array}\right\}\) double-precision | double-precision |
| :--- |
| dss |

Return Value

status	integer	refer to error codes in Appendix A

Using This Function

Factors and Levels

A factor is a way of categorizing data. Data is categorized into levels, beginning with level 0. For example, if you are performing some measurement on individuals, such as counting the number of sit-ups they can perform, one such categorization method is age. For age, one might have three levels, as given below.

Level	Ages
$0:$	6 years to 10 years
$1:$	11 years to 15 years
$2:$	16 years to 20 years

The Statistical Model

Each experimental outcome is expressed as the sum of three parts while performing the analysis of variance. Let $y_{i, m}$ be the $\mathrm{m}^{\text {th }}$ observation from the $\mathrm{i}^{\text {th }}$ level. Each observation is written:

$$
y_{i, m}=\mu+\alpha_{i}+\varepsilon_{i, m}
$$

where
μ is a standard effect
α is the effect of the $\mathrm{i}^{\text {th }}$ level of the factor
$\varepsilon_{i, m}$ is a random fluctuation

Assumptions

Assume that the populations of measurements at each level are normally distributed with mean α_{i} and variance $\sigma_{\mathrm{A}}{ }^{2}$. Assume that the means α_{i} sum to zero. Finally, assume that for each i and $\mathrm{m}, \varepsilon_{\mathrm{i}, \mathrm{m}}$ is normally distributed with mean 0 and variance $\sigma_{\mathrm{A}}{ }^{2}$.

The Hypothesis

Test the (null) hypothesis that $\alpha_{i}=0$ for $i=0,1, \ldots, k-1$ (where \mathbf{k} is the total number of levels). In other words, assume from the start that the levels have no effect on the experimental outcome, then look for evidence to the contrary.

The General Method

Break up the total sum of squares tss, a measure of the total variation of the data from the overall population mean, into component sums of squares, which may be attributed to different sources.

You now have

$$
t s s=s s a+s s e
$$

where ssa is a measure of variation that is attributed to the factor, and where sse is a measure of variation that is attributed to random fluctuation. Divide by appropriate numbers to obtain the averages $\mathbf{m s a}$ and mse. If there is much variation caused by the factor, msa will be larger relative to mse. The ratio \mathbf{f} will also be larger relative to mse.

If the null hypothesis is true, the ratio \mathbf{f} is taken from an F distribution with $k-1$ and $n-k$ degrees of freedom, from which you can calculate probabilities. Given a particular $\mathbf{f}, \mathbf{s i g}$ is the probability that in sampling from this distribution you get a value larger than \mathbf{f}.

Testing the Hypothesis

This function generates a number \mathbf{f} so that, if the hypothesis is true, that number is from an Fdistribution with $\mathrm{k}-1$ and $\mathrm{n}-\mathrm{k}$ degrees of freedom. The function also calculates the probability that a number taken from this F-distribution is larger than \mathbf{f}. This is the output parameter, sig:

$$
\operatorname{sig}=\operatorname{Prob}(x>f)
$$

where x is from $\mathrm{F}(\mathrm{k}-1, \mathrm{n}-\mathrm{k})$.

Use the probability sig to determine when to reject the hypothesis. To do so, choose a level of significance for the hypothesis. The level of significance is how likely you want it to be that you reject the hypothesis when it is true, and so the level of significance should be small (0.05 is a common choice). Keep in mind that the smaller the level of significance, the more hesitant you are to reject the hypothesis.

The hypothesis is rejected when the output parameter sig is less than the chosen level of significance.

Formulas

Let y, m be the $\mathrm{m}^{\text {th }}$ observation made at the $\mathrm{i}^{\text {th }}$ level for $\mathrm{m}=0,1, \ldots, \mathrm{n}_{\mathrm{i}}$ and $\mathrm{i}=0,1, \ldots \mathrm{k}$.
Let $\mathrm{n}_{\mathrm{i}}=$ the number of observations at the $\mathrm{i}^{\text {th }}$ level.

$$
\begin{aligned}
& Y_{i}=\frac{1}{n_{i}} \sum_{m=0}^{n_{i}-1} y_{i, m} \\
& Y_{m}=\frac{1}{k} \sum_{i=0}^{k-1} y_{i, m} \\
& Y=\frac{1}{n} \sum_{i=0}^{k-1} \sum_{m=0}^{n_{i}-1} y_{i, m} \\
& T=n * Y
\end{aligned}
$$

Then

$$
\begin{aligned}
& s s a=\sum_{i=0}^{k}\left(\frac{Y_{i}^{2}}{n_{i}}\right)-\frac{Y^{2}}{n} \\
& m s e=s s a /(k-1)
\end{aligned}
$$

$$
\begin{aligned}
& s s e=\sum_{i=0}^{k-1} \sum_{m=0}^{n_{i}-1} y^{2}{ }_{i, m}-\sum_{i=0}^{k}\left(\frac{Y_{i}^{2}}{n_{i}}\right) \\
& m s e=s s e /(n-k) \\
& t s s=\sum_{i=0}^{k-1} \sum_{m=0}^{n_{i}-1} y_{i, m}{ }^{2}-\frac{Y^{2}}{n}
\end{aligned}
$$

$f=m s a / m s e \quad$ where \mathbf{f} is from an F-distribution with (k-1) and (n-k) degrees of freedom.

Example

Suppose that researchers want to know whether the amount of rainfall affects the yield of a crop. The factor (rainfall) is divided into three levels $(\mathrm{k}=3)$ as given below.

Level	Rainfall (factor)
0	2 inches
1	3 inches
2	4 inches

The researchers set up 10 plots in various geographical locations chosen so that each plot receives a different amount of rainfall. They record the following information.

Level Bushels produced from each plot

0	128	122	126	124
1	140	141	143	
2	120	118	123	

To perform a one-way analysis using the ANOVA1Way function, all the numbers of bushels are stored in a double-precision array \mathbf{y} of size 10 . The integer array level records the levels in which observations were made. For any particular i, these arrays are set such that y_{i} is the number of bushels produced by a plot in level. For example,

$$
\begin{aligned}
& \text { level }_{i}=0 \\
& y_{i}=128,122,126, \text { or } 124
\end{aligned}
$$

are valid combinations. Therefore, the input arrays \mathbf{y} and level in this example could be set up for the ANOVA1Way function as follows.

$$
\begin{aligned}
& y=128,122,126,124,140,141,143,120,118,123 \\
& \text { level }=0,0,0,0,1,1,1,2,2,2
\end{aligned}
$$

Running the code given in the examples below produces the following result.

$$
\mathbf{s i g}=0.0000239
$$

For a level of significance such as 0.05 , the ANOVA1Way results show that the researchers must reject the hypothesis that the rainfall has no effect on the yield of the crop. In other words, the rainfall does affect the crop yield.

Example

```
double y[10], ssa, msa, f, sig, sse, mse, tss;
int level[10];
int k;
int status;
k = 3; /* three levels for rainfall */
/* Read in recorded data y(10), level[10] */
status = ANOVA1Way(y, level, 10, k, &ssa, &msa, &f, &sig, &sse, &mse, &tss);
```


ANOVA2Way

```
int status = ANOVA2Way (double y [ ], int levelA [ ], int levelB [], int N, int L,
    int a, int b, void *info, double *sigA, double *sigB,
    double *sigAB);
```


Purpose

Takes an array of experimental observations made at various levels of two factors and performs a two-way analysis of variance in any of the following models.

- Fixed effects with no interaction and one observation per cell ($\mathbf{L}=1$ per specified levels \mathbf{a} and b of the factors A and B respectively)
- Fixed effects with interaction and $\mathbf{L}>1$ observations per cell
- Either of the mixed-effects models (where one factor is taken to have a fixed effect but the other is taken to have a random effect) with interaction and $\mathbf{L}>1$ observations per cell
- Random effects with interaction and $\mathbf{L}>1$ observations per cell

Any ANOVA looks for evidence that the factors (or interactions among the factors) have a significant effect on experimental outcomes. What varies among models is the method for finding significance.

Parameters

Input	y levelA levelB N L a b	double-precision array integer array integer array integer integer integer integer	array of experimental data of $\mathrm{N}=\|\mathrm{a}\| * \mid \mathrm{b}$ *L elements the $\mathrm{i}^{\text {th }}$ element tells in what level of factor A the $\mathrm{i}^{\text {th }}$ observation falls the $\mathrm{i}^{\text {th }}$ element tells in what level of factor B the $i^{\text {th }}$ observation falls the total number of observations the number of observations per cell the number of levels in factor A. This parameter is negative if A is a random effect the number of levels in factor B . This parameter is negative if B is a random effect
Output	info sigA sigB sigAB	double-precision 2D array double-precision double-precision double-precision	a 4 by 4 matrix as follows: where ss designates sums of squares, dof designates degrees of freedom of ss, ms designates mean squares, and f designates F-distributions (depending on the statistical model) level of significance at which hypothesis (A) must be rejected level of significance at which hypothesis (B) must be rejected level of significance at which hypothesis (AB) must be rejected

Return Value

status	integer	refer to error codes in Appendix A

Using This Function

Factors, Levels and Cells

A factor is a way of categorizing data. Data is categorized into levels, beginning with level 0 . For example, if you are performing some measurement on individuals, such as counting the number of sit-ups they can perform, one such categorization method is age. For factor age, one might have three levels, given below.

0: 6 years to 10 years
1: 11 years to 15 years
2: 16 years to 20 years
Another possible factor is eye color, with the following levels.
0: blue
1: brown
2: green
3: hazel

In this example, an analysis of variance seeks evidence that the ages and eye color of the subjects have an effect on the number of sit-ups performed.

A cell of data consists of all those experimental observations that fall in particular levels of the two factors. In this instance, a cell might consist of those observations made on hazel-eyed individuals between 11 and 15 years old. The number of observations that fall in each cell must be some constant number \mathbf{L} that does not vary between cells.

Random and Fixed Effects

A factor is taken as a random effect when the factor has a large population of levels about which you want to draw conclusions, but that cannot be sampled at all levels. Levels are sampled at random in the hope of generalizing about all levels.

A factor is taken as a fixed effect when the factor can be sampled from all levels about which you want to draw conclusions.

The input parameters \mathbf{a} and \mathbf{b} represent the number of levels in factors A and B, respectively. If factor A is to be random, set \mathbf{a} to a negative value. If factor B is to be random, set \mathbf{b} to a negative value. Notice that if there is only one observation per cell, both \mathbf{a} and \mathbf{b} must be positive (that is, model 1 is used).

The General Method

Each of the models breaks up the total sum of squares (tss, a measure of the total variation of the data from the overall population mean) into some number of component sums of squares. In model 1,

$$
t s s=s s a+s s b+s s e
$$

whereas in models 2 through 4

$$
t s s=s s a+s s b+s s a b+s s e .
$$

Each component of the sums is a measure of variation attributed to a certain factor or interaction among the factors. The component ssa is a measure of the variation due to factor A , ssb is a measure of the variation due to factor B, ssab is a measure of the variation due to the interaction between factors A and B, and sse is a measure of the variation due to random fluctuation. Notice that with model 1 there is no ssab term. This is what is meant by "no interaction".

If factor A has a strong effect on the experimental observations, msa will be relatively large. Specific ratios of these averages are considered because you know how they are statistically distributed. You can therefore determine how likely it is that factor A is as relatively large as it is.

The Statistical Model

Let $\mathrm{yp}, \mathrm{q}, \mathrm{r}$ be the $\mathrm{r}^{\text {th }}$ observation at the $\mathrm{p}^{\text {th }}$ and $\mathrm{q}^{\text {th }}$ levels of A and B , respectively,
where
$\mathrm{r}=0,1, \ldots, \mathrm{~L}-1$.
Model 1. Express each observation as the sum of four components, so that

$$
\mathrm{y}_{\mathrm{p}, \mathrm{q}, \mathrm{r}}=\mu+\alpha_{\mathrm{p}}+\beta_{\mathrm{q}}+\varepsilon_{\mathrm{p}, \mathrm{q}, \mathrm{r}}
$$

where μ represents a standard effect present in each observation, α_{p} represents the effect of the $p^{\text {th }}$ level of factor A, β_{q} represents the effect of the $q^{\text {th }}$ level of factor B, and $\varepsilon_{p, q, r}$ is a random fluctuation.

Models 2, 3, and 4. Express each observation as the sum of five components, so that

$$
y_{p, q, r}=\mu+\alpha_{p}+\beta_{q}+(\alpha \beta)_{p, q}+\varepsilon_{\mathrm{p}, \mathrm{q}, \mathrm{r}}
$$

where μ represents a standard effect present in each observation, α_{p} represents the effect of the $p^{\text {th }}$ level of factor A, β_{q} represents the effect of the $q^{\text {th }}$ level of factor B, and $\varepsilon_{p, q, r}$ is a random fluctuation. In addition, $(\alpha \beta)_{p, q}$ represents the effect of the interaction between the $p^{\text {th }}$ level of factor A and the $\mathrm{q}^{\text {th }}$ level of factor B .

Assumptions

- Assume that for each p, q and $\mathrm{r}, \varepsilon_{\mathrm{p}, \mathrm{q}, \mathrm{r}}$ is normally distributed with mean 0 and variance $\sigma_{\mathrm{e}}{ }^{2}$.
- If a factor such as A is fixed, assume that the populations of measurements at each level are normally distributed with mean α_{p} and variance $\sigma_{A}{ }^{2}$. Notice that all the populations at each of the levels are taken to have the same variance. In addition, it is assumed that all the α_{p} means sum to zero. An analogous assumption is made for B .
- If a factor such as A is random, assume that the effect of the level of A itself, α_{p}, is a random variable normally distributed with mean 0 and variance $\sigma_{A}{ }^{2}$. An analogous assumption is made for B .
- If all of the factors, such as A and B, associated with the effect of an interaction $(\alpha \beta)_{p, q}$ are fixed, assume that the populations of measurements at each level are normally distributed with mean $(\alpha \beta)_{\mathrm{p}, \mathrm{q}}$ and variance $\sigma_{\mathrm{AB}^{2}}{ }^{2}$. For any fixed p , the $(\alpha \beta)_{\mathrm{p}, \mathrm{q}}$ means sum to zero when summing over all q. Similarly, for any fixed q the $(\alpha \beta)_{p, q}$ means sum to zero when summing over all p.
- If any of the factors, such as A and B, associated with the effect of an interaction $(\alpha \beta)_{p, q}$ are random, then the effect is taken to be a random variable normally distributed with mean 0 and variance $\sigma_{A B}{ }^{2}$. If A is fixed but B is random, assume additionally that for any fixed q, the $(\alpha \beta)_{p, q}$ means sum to zero when summing over all p. Similarly, if B is fixed but A is random, assume additionally that for any fixed p , the $(\alpha \beta)_{\mathrm{p}, \mathrm{q}}$ means sum to zero when summing over all q.
- All effects taken to random variables are assumed to be independent.

The Hypotheses

Each of the following hypotheses are different ways of saying that a factor or an interaction among factors has no effect on experimental outcomes. Start by assuming that there are no effects and then seek evidence to contradict these assumptions. The three hypotheses are as follows.

- For (A), $\alpha_{p}=0$ for all levels of p if factor A is fixed; $\sigma_{A}{ }^{2}=0$ if factor A is random
- For $(B), \beta_{q}=0$ for all levels of q if factor B is fixed; $\sigma_{B}{ }^{2}=0$ if factor B is random
- For $(A B),(\alpha \beta)_{p, q}=0$ for all levels of p and q if both factors A and B are fixed; $\sigma_{A B}{ }^{2}=0$ if either factor A or factor B is random. (This does not apply to model 1 . In model 1 , there is no interaction and the associated output parameters are superfluous.)

Testing the Hypotheses

For each hypothesis, the function generates a number so that, if the hypothesis is true, that number will be from a particular F-distribution.

For example, in model $1, \mathrm{fa}=\mathrm{msa} / \mathrm{mse}$ (associated with hypothesis (A)) is from an F-distribution with a-1 and $(a-1)(b-1)$ degrees of freedom $(F(a-1,(a-1)(b-1)))$, given that hypothesis (A) is true. In models 2, 3, and 4, $\mathrm{fa}=\mathrm{msa} / \mathrm{mse}$ (associated with hypothesis (A)) is from an F-distribution with $a-1$ and $a b(L-1)$ degrees of freedom ($\mathrm{F}(\mathrm{a}-1, a b(\mathrm{~L}-1))$), given that hypothesis (A) is true. The function calculates the probability that a number taken from a particular F-distribution is larger than the F-value. For example,

$$
\operatorname{sig} A=\operatorname{Prob}(X>f a)
$$

where X is from $\mathrm{F}(\mathrm{a}-1,(\mathrm{a}-1)(\mathrm{b}-1))$.
Use the probabilities $\operatorname{sig} A, \operatorname{sigB}$, and sigAB to determine when to reject the associated hypotheses (A), (B), and (AB). To make this determination, choose a level of significance for each hypothesis. The level of significance is how likely you want it to be that you reject the hypothesis when it is in fact true. Ordinarily, you do not want it to be very likely that you reject the hypothesis when it is true, and so the level of significance should be small (0.05 is a common choice). Keep in mind that the smaller the level of significance, the more hesitant you are to reject the hypothesis.

A particular hypothesis is rejected when the associated output parameter $\operatorname{sig} \mathbf{A}, \operatorname{sigB}$, or sigAB is less than the level of significance chosen for that hypothesis. If A is a random effect, and the chosen level of significance is 0.05 , and $\operatorname{sig} \mathbf{A}=0.03$, you must reject the hypothesis that $\sigma_{\mathrm{A}}{ }^{2}=0$, and conclude that factor A does have an effect on the experimental observations.

Formulas

Let $y \mathrm{p}, \mathrm{q}, \mathrm{r}$ be the $\mathrm{r}^{\text {th }}$ observation at the $\mathrm{p}^{\text {th }}$ and $\mathrm{q}^{\text {th }}$ levels of A and B , respectively, where

$$
\mathrm{r}=0,1, \ldots, \mathrm{~L}-1 .
$$

Let

$$
\begin{aligned}
& a a=|a| \\
& b b=|b| \\
& T_{p, q}=\sum_{r=0}^{L-l} y_{p, q, r}
\end{aligned}
$$

$$
\begin{aligned}
& T_{p}=\sum_{q=0}^{b b-1} T_{p, q} \\
& T_{q}=\sum_{p=0}^{a a-l} T_{p, q}
\end{aligned}
$$

$\mathrm{T}=$ the total sum of all observations

$$
\begin{aligned}
& A=\sum_{p=0}^{a a-1} T_{p}^{2} /\left(b b^{*} L\right) \\
& B=\sum_{q=0}^{b b-1} T_{q}^{2} /\left(a a^{*} L\right) \\
& S=\sum_{p=0}^{a a-l} \sum_{q=0}^{b b-l} T_{p, q^{2}} / L \\
& C F=T^{2} /\left(a a^{*} b b^{*} L\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { ssa }=A-C F \quad m s a=s s a /(a a-1)=s s a / d o f a \\
& s s b=B-C F \quad m s b=s s b /(b b-1)=s s b / d o f b \\
& s s a b=S-A-B-C F \quad m s a b=s s a b /(a-1)(b-1)=s s a b / d o f a b \\
& \text { sse }=T-S \\
& m s e=s s e /\left(a a * b b^{*}(L-1)\right)=\text { sse/dofe } \\
& f b=m s b / m s e \text { (if A is fixed) } \\
& =m s b / m s a b \text { (if A is random) } \\
& f a b=m s a b / m s e
\end{aligned}
$$

If $\mathrm{f}=\mathrm{ms}_{1} / \mathrm{ms}_{2}$ and $\mathrm{ms}_{1}=\mathrm{ss}_{1} / \mathrm{dof}_{1}$ and $\mathrm{ms}_{2}=\mathrm{ss}_{2} / \mathrm{dof}_{2}$, we assume that f is from an F -distribution with dof_{1} and dof $_{2}$ degrees of freedom $\left(\mathrm{F}\left(\mathrm{dof}_{1}\right.\right.$, dof $\left.\left._{2}\right)\right)$.

Example

Suppose that researchers want to know how the amount of rainfall and the average temperature affect the yield of a crop. Each factor (rainfall, and temperature) is divided into three levels as follows.

Level	Rainfall (Factor A)
0	2 inches
1	3 inches
2	4 inches
Level	Temperature (Factor B)
0	$76-80$ degrees
1	$81-85$ degrees
2	$86-90$ degrees

A particular plot planted with the crop may be in any one of the 9 different combinations of these levels with the two factors. For example, one combination might be two inches of rain and an average temperature between 76 and 80 degrees, recorded as (0,0). These combinations are called as cells.

The researchers set up 18 plots in various geographical locations chosen so that two plots will fall in each of the 9 cells. To measure the productivity of a particular plot, they record the crop production. Let Rainfall be Factor A and Temperature be Factor B. They record the following information.

(\mathbf{A}, \mathbf{B})	Bushels produced from each plot
$(0,0)$	$128 \quad 122$
$(0,1)$	$113 \quad 108$
$(0,2)$	116
$(1,0)$	132
$(1,1)$	119
$(1,2)$	121
$(2,0)$	118
$(2,1)$	114
$(2,2)$	141
121	123

To perform a two-way analysis of variance in the fixed effect model using the ANOVA2Way function, all the numbers of bushels are stored in a double-precision array \mathbf{y} of size 18. The integer arrays levelA and levelB record the cells in which observations were made. For any particular i, these arrays are set such that y_{i} is the number of bushels produced by a plot in the (levelA ${ }_{i}$, levelB ${ }_{i}$ cell. For example,

$$
\begin{aligned}
& \left(\text { levelA }_{i} \text { levelB }_{i}\right)=(0,1) \\
& y_{i}=113, \text { or } 108
\end{aligned}
$$

are valid combinations.

Therefore, the input arrays \mathbf{y}, levelA, and levelB in this example could be set up for the ANOVA2Way function as follows.

$$
\begin{aligned}
& y=128,122,113,108,116,132,129,119,121,126,113,118,114,141,133,121,123 \\
& \text { levelA }=0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2 \\
& \text { level } B=0,0,1,1,2,2,0,0,1,1,2,2,0,0,1,1,2,2
\end{aligned}
$$

Running the code given in the examples below produces the following results.

$$
\begin{aligned}
& \operatorname{sig} A=0.026 \\
& \operatorname{sigB}=0.203 \\
& \operatorname{sigAB}=0.0018
\end{aligned}
$$

For a level of significance such as 0.05 , the ANOVA2Way results show that the researchers cannot reject the hypotheses that the combination of rainfall and temperature has any effect on the yield of the crop. In other words, the combination of rainfall and temperature has a significant effect on crop yield.

Example

```
double y[18], sigA, sigB, sigAB, info[4][4];
int levelA[18], levelB[18];
int L, a, b;
int status;
L = 2; /* two observations per cell */
a = 3; /* three levels for factor A, Rainfall */
b = 3; /* three levels for factor B, Temperature */
/* Read in recorded data y[18], levelA[18], levelB[18] */
status = ANOVA2Way(y, levelA, levelB, 18, L, a, b, info, &sigA,
    &sigB, &sigAB);
```


ANOVA3Way

```
int status =ANOVA3Way (double y [], int levelA [ ], int levelB [], int levelC [ ],
int \(\mathbf{N}\), int \(\mathbf{L}\), int \(\mathbf{a}\), int \(\mathbf{b}\), int \(\mathbf{c}\), void *info, double
*sigA, double *sigB, double *sigC, double *sigAB,
double *sigAC, double *sigBC, double *sigABC);
```


Purpose

Takes an array of experimental observations made at various levels of three factors and performs a three-way analysis of variance in any of the following models.

- Fixed effects with interaction and $\mathbf{L}>1$ observations per cell
- Any of the six mixed-effects models (where one or two factors are taken to have fixed effects but the remaining factors are taken to have random effects) with interaction and $\mathbf{L}>1$ observations per cell
- Random effects with interaction and $\mathbf{L}>1$ observations per cell

Any ANOVA looks for evidence that the factors (or interactions among the factors) have a significant effect on experimental outcomes. What varies among models is the method for finding significance.

Parameters

(continues)

Parameters (Continued)

Output	info	double-precision 2D array	an 8 by 4 4 matrix as follows: ssa dofa msa fa ssb dofb msb fb ssc dofc msc fc ssab dofab msab fab ssac dofac msac fac ssbc dofbc msbc fbc ssabc dofabc msabc fabc sse dofe mse 0.0 where ss designates sums of squares, dof designates degrees of freedom of ss, ms designates mean squares, and f designates F-distributions (depending on the statistical model)
	$\operatorname{sig} A$	double-precision	level of significance at which hypothesis (A) must be rejected
	sigB	double-precision	level of significance at which hypothesis (B) must be rejected
	sigC	double-precision	level of significance at which hypothesis (C) must be rejected
	sigAB	double-precision	level of significance at which hypothesis (AB) must be rejected
	sigAC	double-precision	level of significance at which hypothesis (AC) must be rejected
	sigBC	double-precision	level of significance at which hypothesis (BC) must be rejected
	sigABC	double-precision	level of significance at which hypothesis (ABC) must be rejected

Return Value

status	integer	refer to error codes in Appendix A

Using This Function

Factors, Levels, and Cells

A factor is a way of categorizing data. Data is categorized into levels, beginning with level 0 . For example, if you are performing some measurement on individuals, such as counting the number of sit-ups they can perform, one such categorization method is age. For age, one might have three levels, as given below.

Levels	Ages
0	6 years to 10 years
1	11 years to 15 years
2	16 years to 20 years
nother possible factor is eye color, with the following levels.	

Levels	Eye Colors
0	blue
1	brown
2	green
3	hazel

A third factor might be height with levels in blocks of 10 centimeters. A cell of data consists of all those experimental observations that fall in particular levels of the three factors. In this instance, a cell might consist of those observations made on hazel-eyed individuals between 11 and 15 years old who are between 151 and 160 cm tall. The number of observations that fall in each cell must be some constant number \mathbf{L} that does not vary between cells.

Random and Fixed Effects

A factor is taken as a random effect when the factor has a large population of levels about which you want to draw conclusions, but that cannot be sampled at all levels. Levels are sampled at random in the hope of generalizing about all levels.

A factor is taken as a fixed effect when the factor can be sampled from all levels about which you want to draw conclusions.

The input parameters \mathbf{a}, \mathbf{b}, and \mathbf{c} represent the number of levels in factors A, B, and C , respectively. If factor A is to be random, set \mathbf{a} to a negative value. In the same way, set \mathbf{b} and \mathbf{c} to negative values if B and C are to be random.

The General Method

Each of the models breaks up the total sum of squares (tss, a measure of the total variation of the data from the overall population mean) into some number of component sums of squares, so that

$$
t s s=s s a+s s b+s s c+s s a b+s s a c+s s b c+s s a b c+s s e
$$

Each component in the sum is a measure of variation attributed to a certain factor or interaction among the factors. In this instance, ssa is a measure of the variation due to factor A, ssb is a measure of the variation due to factor B , ssc is a measure of the variation due to factor C , ssab is a measure of the variation due to the interaction between factors A and B, and so on for ssac, ssbc, and ssabc. The variable sse is a measure of the variation due to random fluctuation.

If factor A has a strong effect on the experimental observations, msa will be relatively large. You can look at specific ratios of these averages because you know how they are statistically
distributed. You can therefore determine how likely it is that factor A is as relatively large as it is.

The Statistical Model

Let $y_{p, q, r, s}$ be the $s^{\text {th }}$ observation at the $\mathrm{p}^{\text {th, }} \mathrm{q}^{\text {th, }}$, and $\mathrm{r}^{\text {th }}$ levels of A, B, and C, respectively, where $s=0,1, \ldots, L-1$. Express each observation as the sum of eight components, so that

$$
y_{p, q, r, s}=\mu+\alpha_{p}+\beta_{q}+\gamma_{r}+(\alpha \beta)_{p, q}+(\alpha \gamma)_{p, r}+(\beta \gamma)_{q, r}+(\alpha \beta \gamma)_{p, q, r}+\varepsilon_{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{~s}}
$$

where μ represents a standard effect present in each observation; $\alpha_{\mathrm{p}}, \beta_{\mathrm{q}}$, and γ_{r} are the effects of factors A, B, and C respectively; $(\alpha \beta)_{\mathrm{p}, \mathrm{q}},(\alpha \gamma)_{\mathrm{p}, \mathrm{r}},(\beta \gamma)_{\mathrm{q}, \mathrm{r}}$, and $(\alpha \beta \gamma)_{\mathrm{p}, \mathrm{q}, \mathrm{r}}$ are the effects of the corresponding interactions; and $\varepsilon_{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}}$ is a random fluctuation.

Assumptions

- Assume that for each $\mathrm{p}, \mathrm{q} \mathrm{r}$, and $\mathrm{s}, \varepsilon_{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}}$ is normally distributed with mean 0 and variance $\sigma_{\mathrm{e}}{ }^{2}$.
- If a factor such as A is fixed, assume that the populations of measurements at each level are normally distributed with mean α_{p} and variance $\sigma_{A}{ }^{2}$. Notice that all the populations at each of the levels are taken to have the same variance. In addition, it is assumed that all the α_{p} means sum to zero. Analogous assumptions are made for B and C.
- If a factor such as A is random, assume that the effect of the level of A itself, α_{p}, is a random variable normally distributed with mean 0 and variance $\sigma_{\mathrm{A}}{ }^{2}$. Analogous assumptions are made for B and C .
- If all of the factors, such as A and B, associated with the effect of an interaction $(\alpha \beta)_{p, q}$ are fixed, assume that the populations of measurements at each level are normally distributed with mean $(\alpha \beta)_{p, q}$ and variance $\sigma_{A B}{ }^{2}$. For any fixed p, the $(\alpha \beta)_{p, q}$ means sum to zero when summing over all q. Similarly, for any fixed q, the $(\alpha \beta)_{p, q}$ means sum to zero when summing over all p .
- If any of the factors, such as A and B, associated with the effect of an interaction $(\alpha \beta)_{p, q}$ are random, the effect is taken to be a random variable normally distributed with mean 0 and variance $\sigma_{\mathrm{AB}}{ }^{2}$. If A is fixed but B is random, assume additionally that for any fixed q , the $(\alpha \beta)_{p, q}$ means sum to zero when summing over all p. Similarly, if B is fixed but A is random, assume additionally that for any fixed p , the $(\alpha \beta)_{\mathrm{p}, \mathrm{q}}$ means sum to zero when summing over all q.
- All effects taken to random variables are assumed to be independent.

The Hypotheses

Each of the following hypotheses are different ways of saying that a factor or an interaction among factors has no effect on experimental outcomes. Start by assuming that there are no effects and then seek evidence to contradict these assumptions. The seven hypotheses are as follows.

- For (A), $\alpha_{p}=0$ for all levels of p if factor A is fixed; $\sigma_{A}{ }^{2}=0$ if factor A is random
- For (B), $\beta_{q}=0$ for all levels of q if factor B is fixed; $\sigma_{B}{ }^{2}=0$ if factor B is random
- For (C), $\gamma_{r}=0$ for all levels of r if factor C is fixed; $\sigma_{C}{ }^{2}=0$ if factor C is random
- For $(A B),(\alpha \beta)_{p, q}=0$ for all levels of p and q if factors A and B are fixed; $\sigma_{A B}{ }^{2}=0$ if either factor A or B is random
- For $(\mathrm{AC}),(\alpha \gamma)_{p, r}=0$ for all levels of p and r if factors A and C are fixed; $\sigma_{A C}{ }^{2}=0$ if either factor A or C is random
- For $(B C),(\beta \gamma)_{q, r}=0$ for all levels of q and r if factors B and C are fixed; $\sigma_{B C}{ }^{2}=0$ if either factor B or C is random
- For (ABC), $(\alpha \beta \gamma)_{p, q, r}=0$ for all levels of p, q, and r if factors A, B, and C are fixed; $\sigma_{\mathrm{ABC}}{ }^{2}=0$ if any of the factors A, B, or C are random

Testing the Hypotheses

For each hypothesis, the function generates a number so that, if the hypothesis is true, that number will be from a particular F-distribution.

For example, in the fixed-effects model, the number $\mathrm{fa}=\mathrm{msa} / \mathrm{mse}$ (associated with hypothesis (A)) is from an F -distribution with $\mathrm{a}-1$ and $\mathrm{abc}(\mathrm{L}-1)$ degrees of freedom $(\mathrm{F}(\mathrm{a}-1, \mathrm{abc}(\mathrm{L}-1))$), given that hypothesis (A) is true. The function calculates the probability that a number taken from a particular F-distribution is larger than the F-value. For example,

$$
\operatorname{sig} A=\operatorname{Prob}(X>f a)
$$

where X is from $\mathrm{F}(\mathrm{a}-1, \mathrm{abc}(\mathrm{L}-1))$.
 reject the associated hypotheses: (A), (B), (C), (AB), (AC), (BC), and (ABC). To do so, choose a level of significance for each hypothesis. The level of significance is how likely you want it to be that you reject the hypothesis when it is in fact true. Ordinarily you do not want it to be very
likely that you reject the hypothesis when it is true, and so the level of significance should be small (0.05 is a common choice). Keep in mind that the smaller the level of significance, the more hesitant you are to reject the hypothesis.

A particular hypothesis is rejected when the associated output parameter $\operatorname{sig} A, \operatorname{sigB}, \mathbf{s i g C}$, $\operatorname{sigAB}, \operatorname{sig} A C, \operatorname{sigBC}$, or $\operatorname{sig} \mathbf{A B C}$ is less than the level of significance chosen for that hypothesis. If A is a random effect, and the chosen level of significance is 0.05 , and $\boldsymbol{\operatorname { s i g }} \mathbf{A}=0.03$, you must reject the hypothesis that $\sigma_{\mathrm{A}}{ }^{2}=0$, and conclude that factor A does have an effect on the experimental observations.

With some models there are no appropriate tests for certain hypotheses. In these cases the output parameters directly involved with the testing of those hypotheses will be set to -1.0.

Formulas

Let $y_{p, q, r, s}$ be the $\mathrm{s}^{\text {th }}$ observation at the $\mathrm{p}^{\text {th, }} \mathrm{q}^{\text {th, }}$, and $\mathrm{r}^{\text {th }}$ levels of A, B, and C, respectively, where $\mathrm{s}=0,1, \ldots, \mathrm{~L}-1$.

Let

$$
\begin{aligned}
& a a=|a| \\
& b b=|b| \\
& c c=|c| \\
& T_{p, q, r}=\sum_{s=0}^{L-1} y_{p, q, r, s} \\
& T_{p, q}=\sum_{r=0}^{c c-1} T_{p, q, r} \\
& T_{p, r}=\sum_{q=0}^{b b-l} T_{p, q, r} \\
& T_{q, r}=\sum_{p=0}^{a a-l} T_{p, q, r} \\
& T_{p}=\sum_{q=0}^{b b-l} T_{p, q} \\
& T_{q}=\sum_{p=0}^{a a-l} T_{p, q}
\end{aligned}
$$

$$
T_{r}=\sum_{p=0}^{a a-l} T_{p, r}
$$

$\mathrm{T}=$ the total sum of all observations

$$
\begin{aligned}
& A=\sum_{p=0}^{a a-l} T_{p}^{2} /\left(b b^{*} c c^{*} L\right) \\
& B=\sum_{q=0}^{b b-l} T_{p}^{2} /(a a * c c * L)
\end{aligned}
$$

$$
C=\sum_{r=0}^{c c-1} T_{r}^{2} /(a a * b b * L)
$$

$$
A B=\sum_{p=0}^{a a-1} \sum_{q=0}^{b b-1} T_{p, q}{ }^{2} /\left(c c^{*} L\right)
$$

$$
A C=\sum_{p=0}^{a a-l} \sum_{r=0}^{c c-l} T_{p, r}{ }^{2} /(b b * L)
$$

$$
B C=\sum_{q=0}^{b b-l} \sum_{r=0}^{c c-l} T_{q, r}{ }^{2} /\left(a a^{*} L\right)
$$

$$
S=\sum_{p=0}^{a a-l} \sum_{q=0}^{b b-l} \sum_{r=0}^{c c-l} T_{p, q, r}{ }^{2} / L
$$

$$
C F=T^{2} /(a a * b b * c c * L)
$$

Then

$$
\begin{array}{ll}
s s a=A-C F & m s a=s s a /(a a-1)=s s a / d o f a \\
s s b=B-C F & m s b=s s b /(b b-1)=s s b / d o f b \\
s s c=C-C F & m s c=s s c /(c c-1)=s s c / d o f c \\
s s a b=A B-A-B+C F & m s a b=s s a b /(a a-1)(b b-1)=s s a b / d o f a b \\
s s a c=A C-A-C+C F & m s a c=s s a c /(a a-1)(c c-1)=s s a c / d o f a c \\
s s b c=B C-B-C+C F & m s b c=s s b c /(b b-1)(c c-1)=s s b c / d o f b c
\end{array}
$$

```
    ssabc =S - AB-AC-BC + A + B + C-CF msabc = ssabc/(aa-1)(bb-1)(cc-1)
    = ssabc/dofabc
    mse=sse/(aa*bb*cc)(L-1) = sse/dofe
fa =msa/mse (if B and C are fixed)
    =msa/msab (if B is random and C is fixed)
    =msa/msac (if B is fixed and C is random)
fb =msb/mse (if A and C are fixed)
    = msb/msab (if A is random and C is fixed)
    =msb/msbc (if A is fixed and C is random)
fc = msc/mse (if A and B are fixed)
    =msc/msac (if A is random and B is fixed)
    =msc/msbc (if A is fixed and B is random)
fab = msab/mse (if C is fixed)
    = msab/msabc (if C is random)
fac = msac/mse (if B is fixed)
    = msac/msabc (if B is random)
fbc = msbc/mse (if A is fixed)
    =msbc/msabc (if A is random)
fabc = msabc/mse
```

If $\mathrm{f}=\mathrm{ms}_{1} / \mathrm{ms}_{2}$ and $\mathrm{ms}_{1}=\mathrm{ss}_{1} / \mathrm{dof}_{1}$ and $\mathrm{ms}_{2}=\mathrm{ss}_{2} / \mathrm{dof}_{2}$, we assume that f is from an F-distribution with dof_{1} and dof_{2} degrees of freedom $\left(\mathrm{F}\left(\operatorname{dof}_{1}, \operatorname{dof}_{2}\right)\right)$.

Example

Suppose that researchers want to know how the number of hours of sunlight, the amount of rainfall, and the average temperature affect the yield of a crop. Each factor (sunlight, rainfall, and temperature) is divided into three levels as follows.

Level	Sunlight (Factor A)
0	5 hours
1	6 hours
2	7 hours
Level	Rainfall (Factor B)
0	2 inches
1	3 inches
2	4 inches

Level	Temperature (Factor C)
0	$76-80$ degrees
1	$81-85$ degrees
2	$86-90$ degrees

A particular plot planted with the crop may be in any one of the 27 different combinations of these levels with the three factors. For example, one combination might be six hours of sunlight with two inches of rainfall and an average temperature between 76 and 80 degrees, recorded as $(1,0,0)$. These combinations are called cells.

The researchers set up 54 plots in various geographical locations chosen so that two plots will fall in each of the 27 cells. To measure the productivity of a particular plot, they record the crop production. Let Sunlight be Factor A, Rainfall be Factor B, and Temperature be Factor C.

They record the following information.

(A, B, C)	Bushels produced from each plot
(0, 0, 0)	128122
$(0,0,1)$	113108
$(0,0,2)$	116116
($0,1,0$)	132129
(0, 1, 1)	119121
$(0,1,2)$	126113
(0, 2, 0)	118114
$(0,2,1)$	141133
$(0,2,2)$	121123
$(1,0,0)$	119118
$(1,0,1)$	111115
$(1,0,2)$	143140
$(1,1,0)$	127129
$(1,2,2)$	112113

$(\mathbf{A}, \mathbf{B}, \mathbf{C})$	Bushels produced from each plot
$(1,1,1)$	$128 \quad 120$
$(1,1,2)$	$122 \quad 121$
$(1,2,0)$	$114 \quad 115$
$(1,2,1)$	$116 \quad 113$
$(2,0,0)$	$113 \quad 125$
$(2,0,1)$	$135 \quad 131$
$(2,0,2)$	$145 \quad 145$
$(2,1,0)$	152147
$(2,1,1)$	137141
$(2,1,2)$	$171 \quad 171$
$(2,2,0)$	143144
$(2,2,1)$	145147
$(2,2,2)$	$121 \quad 123$

To perform a three-way analysis of variance in the fixed effect model using the LabWindows ANOVA3Way function, all the numbers of bushels are stored in a double-precision array \mathbf{y} of size 54. The integer arrays levelA, levelB, and levelC record the cells in which observations were made. For any particular i, these arrays are set such that $y[i]$ is the number of bushels produced by a plot in the $\left(\right.$ levelA $_{\mathrm{i}}$, levelB $_{\mathrm{i}}$, levelC i_{i}) cell. For example,

$$
\left(\text { levelA }_{i}, \text { levelB }_{i}, \text { levelC }_{i}\right)=(0,1,1)
$$

$$
y_{i}=119 \text { or } 121
$$

are valid combinations.

Therefore, the input arrays \mathbf{y}, levelA, levelB, and levelC in this example could be set up for the ANOVA3Way function as follows.

```
\(y=128,122,113,108,116,116,132,129, \ldots\)
levelA \(=0,0,0,0,0,0,0,0, \ldots\)
levelB \(=0,0,0,0,0,0,1,1, \ldots\)
levelC \(=0,0,1,1,2,2,0,0, \ldots\)
```

Running the code given in the examples below produces the following results.

$$
\begin{aligned}
& \operatorname{sigA}=1.11 \mathrm{e}^{-16} \\
& \operatorname{sigB}=1.3 \mathrm{e}^{-8} \\
& \operatorname{sig}=0.0072 \\
& \operatorname{sigAB}=1.2 \mathrm{e}^{-8} \\
& \operatorname{sigAC}=2.0 \mathrm{e}^{-4} \\
& \operatorname{sigBC}=4.5 \mathrm{e}^{-10} \\
& \operatorname{sigABC}=4.8 \mathrm{e}^{-10}
\end{aligned}
$$

For a level of significance such as 0.05 , the ANOVA3Way results show that the researchers must reject the hypotheses that sunlight, rainfall and temperature have no effect on the yield of the crop. In other words, all three factors have a significant effect on crop yield.

Example

```
double y[54], sigA, sigB, sigC,sigAB, sigAC, sigBC, sigABC, info[8][4];
int levelA[54], levelB[54], levelC[54];
int L, a, b, c;
int status;
L = 2; /* two observations per cell */
a = 3; /* three levels for factor A, Sunlight */
b = 3; /* three levels for factor B, Rainfall */
c = 3; /* three levels for factor C, Temperature */
/* Read in recorded data y[54], levelA[54], levelB[54] and levelC[54] */
status = ANOVA3Way(y, levelA, levelB, levelC, 54, L, a, b, c,
    info, &sigA, &sigB, &sigC, &sigAB, &sigAC,
    &sigBC, &sigABC);
```


Arbitrary Wave

```
int status = ArbitraryWave (int n, double amp, double f, double *phase,
    double waveTable [ ], int tableSize, int interp,
    doublex[]);
```


Purpose

Generates an array containing an arbitrary wave, with each cycle described by an interpolated version of the specified waveTable. The output array \mathbf{x} is generated according to the following formula.

$$
x_{i}=\operatorname{amp} * \operatorname{arb}(* p h a s e+f * 360.0 * i)
$$

where

$$
\operatorname{arb}(p)=W T(p \text { modulo } 360.0)
$$

$f=$ frequency, cycles/sample
$\mathrm{WT}(\mathrm{x})$ is computed according to the following interpolation values.

$$
W T(x)=\left\{\begin{array}{lr}
\text { waveTable }_{i x} & \text { for interp }=0 \\
\text { waveTable }_{i x}+d x *\left(\text { waveTable }_{(i x+1) \%_{\text {tablesize }}}-\text { waveTable }_{i x}\right) & \text { for interp }=1
\end{array}\right.
$$

where

$$
\begin{aligned}
& i x=(\text { int }) x \\
& d x=x-(\text { int }) x
\end{aligned}
$$

and (int) is the integral part of the variable x. This function can be used to simulate a continuous acquisition from an arbitrary wave function generator. The unit of the input *phase is in degrees, and *phase is set to
$(*$ phase $+\mathrm{f} * 360.0 * \mathrm{n})$ modulo 360 before returning.

Parameters

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { Input } & \begin{array}{l}\text { n } \\
\text { amp } \\
\text { f }\end{array} & \begin{array}{l}\text { integer } \\
\text { double-precision } \\
\text { double-precision }\end{array} & \begin{array}{l}\text { number of samples to generate. } \\
\text { amplitude of the generated signal. } \\
\text { frequency of the generated signal, in } \\
\text { normalized units of cycles/sample. } \\
\text { points to the initial phase, in degrees, } \\
\text { of the generated signal. } \\
\text { contains equally-spaced samples of } \\
\text { one cycle of the generated signal. } \\
\text { number of elements contained in the } \\
\text { waveTable array. } \\
\text { determines the type of interpolation }\end{array}
$$

used in generating the arbitrary wave\end{array}\right\}\)| tablesize |
| :--- |
| signal from the waveTable samples. |
| $0=$ No Interpolation |
| interp |

Return Value

status	integer	refer to error codes in Appendix A

AutoPowerSpectrum

```
int status = AutoPowerSpectrum (double x[], int n, double dt,
                        double autoSpectrum [ ], double *df);
```


Purpose

Computes the single-sided, scaled auto power spectrum of a time-domain signal. The auto power spectrum is defined as
$F F T(X) F F T^{*}(X) / n^{2}$
where \mathbf{n} is the number of points in the signal array X and $*$ denotes complex conjugate. The auto power spectrum is converted to a single-sided form.

Parameters

Input	$\begin{aligned} & \mathbf{x} \\ & \mathbf{n} \\ & \mathbf{d t} \end{aligned}$	double-precision array integer double-precision	contains the time-domain signal. number of elements in the input array. \mathbf{n} must be a power of 2 . $\mathbf{d t}$ is the sample period of the timedomain signal, usually in seconds. $\mathbf{d t}=1 / \mathrm{fs}$, where fs is the sampling frequency of the time-domain signal.
Output	autoSpectrum	double-precision array double-precision	autoSpectrum is the single-sided amplitude spectrum magnitude in volts RMS if the input signal is in volts. If the input signal is not in volts, the results are in input signal units RMS. This array must be at least $\mathbf{n} / 2$ elements long. df points to the frequency interval, in hertz, if dt is in seconds. $\text { *df = } 1 /(\mathbf{n} * \mathbf{d t})$

Return Value

status	integer	refer to error codes in Appendix A

BackSub

```
int status = BackSub (void *a, double y [ ], int n, double \(\mathbf{x}[\) ] \()\);
```


Purpose

Solves the linear equations $\mathrm{a}^{*} \mathrm{x}=\mathrm{y}$ by backward substitution. \mathbf{a} is assumed to be an \mathbf{n} by \mathbf{n} lower triangular matrix whose diagonal elements are all ones. \mathbf{x} is obtained by the following formulas.

$$
x_{n-1}=y_{n-1} / a_{n-1, n-1}
$$

$$
x_{i}=\left(y_{i}-\sum_{j=i+1}^{n-1} a_{i, j} * x_{j}\right) / a_{i, i} \quad \text { for } \mathrm{i}=\mathrm{n}-2, \mathrm{n}-3, \ldots 0
$$

The operation can be performed in place; that is, \mathbf{x} and \mathbf{y} can be the same array. BackSub is used in conjunction with LU and ForwSub to solve linear equations.

Refer to the LU function description for more information.

Parameters

Input	\mathbf{a}	double-precision 2D array double-precision array integer	input matrix input vector n
Output	\mathbf{x}	double-precision array	solution vector

Return Value

status	integer	refer to error codes in Appendix A

Example

```
/*To solve a linear equation A*x = y */
double A[10][10], x[10], y[10];
int p[10]; /* permutation vector */
int sign, n;
n = 10;
LU(A,n,p,&sign); /* LU decomposition of A */
ForwSub(A,y,n,x,p); /* forward substitution */
BackSub(A,x,n,x); /* backward substitution */
```


Bessel_CascadeCoef

int status = Bessel_CascadeCoef (double fs, double fL, double fH, IIRFilterPtr filterInformation);

Purpose

Generates the set of cascade form filter coefficients to implement an IIR filter as specified by the Bessel filter model.
filterInformation is the pointer to the filter structure which contains the filter coefficients and the internal filter information. You must allocate this structure by calling AllocIIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first call FreeIIRFilterPtr to free the present filter structure and then call AllocIIRFilterPtr with the new type and order parameters before calling this design function.

If the type and order remain the same, and you can call this IIR design function without calling FreeIIRFilterPtr and AllocIIRFilterPtr. In this case, you should properly reset the filtering operation for that structure by calling ResetIIRFilter before the first call to IIRCascadeFiltering.

Parameters

Input	fs	double-precision	
fL	double-precision	Specifies the sampling frequency in Hz. Specifies the desired lower cutoff frequency of the filter in Hz. Specifies the desired upper cutoff frequency of the filter in Hz.	
Output	filterInformation	IIRFilterPtr	filterInformation is the pointer to the filter structure which contains the filter coefficients and the internal filter information. You must allocate this structure by calling AllocIIRFilterPtr before calling this cascade IIR filter design function. Please refer to the function AllocIIRFilterPtr for further information about the filter structure.

Return Value

status	integer	Refer to error codes in Appendix A.

Example

```
/* Design a cascade lowpass Bessel IIR filter */
double fs, fl, fh, x[256], y[256];
int type,order,n;
IIRFilterPtr filterInfo;
n = 256;
fs = 1000.0;
fl = 200.0;
order = 5;
type = 0; /* lowpass */
Uniform(n,17,x);
```

```
filterInfo = AllocIIRFilterPtr(type,order);
if(filterInfo!=0) {
    Bessel_CascadeCoef(fs,fl,fh,filterInfo);
    IIRCascadeFiltering(x,n,filterInfo,y);
    FreeIIRFilterPtr(filterInfo);
}
```


Bessel_Coef

int status = Bessel_Coef (int type, int order, double fs, double fL, double fH, double a [] int na, double b [], int nb);

Purpose

Generates the set of filter coefficients to implement an IIR filter as specified by the Bessel filter model. The type parameter has the following valid values.

$$
\text { type }= \begin{cases}0 & \text { lowpass filter, } \mathbf{f H} \text { is not used } \\ 1 & \text { highpass filter, } \mathbf{f H} \text { is not used. } \\ 2 & \text { bandpass filter } \\ 3 & \text { bandstop filter }\end{cases}
$$

$\mathbf{a}[\mathbf{n a}]$ and $\mathbf{b}[\mathbf{n b}]$ are the reverse and forward filter coefficients. The actual filtering

$$
y_{n}=\frac{1}{a_{0}}\left(\sum_{i=0}^{n b-1} b_{i} x_{n-i}-\sum_{i=1}^{n a-1} a_{i} y_{n-i}\right)
$$

is achieved by using the function IIRFiltering.

Parameters

Input	type order fs fL fH na nb	integer integer double-precision double-precision double-precision integer integer	controls the filter type of the Bessel IIR filter coefficients. order of the IIR filter. sampling frequency in Hz . desired lower cutoff frequency of the filter in Hz. desired higher cutoff frequency of the filter in Hz . number of coefficients in the a coefficient array. number of coefficients in the \mathbf{b} coefficient array.
Output	a	double-precision array double-precision array	array containing the reverse coefficients of the designed IIR filter. array containing the forward coefficients of the designed IIR filter.

Return Value

status	integer	refer to error codes in Appendix A

BlkHarrisWin

int status = BlkHarrisWin (double $\mathbf{x}[$] , int \mathbf{n});

Purpose

Applies a 3-term Blackman-Harris window to the input sequence X. If Y represents the output sequence, the elements of Y are obtained using the equation

$$
Y_{i}=X_{i}(0.42323-0.49755 \cos (2 \pi i / n)+0.07922 \cos (4 \pi i / n))
$$

where \mathbf{n} is the number of elements in X .

Parameters

Input	\mathbf{x}		
\mathbf{n}		\quad	double-precision array
:---			
integer	\quad	contains the input signal.	
:---			
The number of elements in the input			
array.	,	Output	
:---			
\mathbf{x}			

Return Value

status	integer	refer to error codes in Appendix A

BkmanWin

int status $=\mathbf{B k m a n W i n}($ double $\mathbf{x}[$], int $\mathbf{n})$;

Purpose

Applies a Blackman window to the \mathbf{x} input signal. The Blackman window is defined by the following formula.

$$
w_{i}=0.42-0.5 \cos (2 \pi i / n)+0.08 \cos (4 \pi i / n) \quad \text { for } i=0,1, \ldots, n-1
$$

The output signal is obtained by the following formula.

$$
x_{i}=x_{i}^{*} w_{i} \quad \text { for } i=0,1, \ldots, n-1
$$

The window operation is performed in place. The windowed data \mathbf{x} replaces the input data \mathbf{x}.

Parameters

Input	X	double-precision array integer	input data number of elements in \mathbf{x}
Output	x	double-precision array	windowed data

Return Value

status	integer	refer to error codes in Appendix A

Bw_BPF

```
int status = Bw_BPF (double x [ ], int n, double fs, double fl, double fh,
    int order, double y[]);
```


Purpose

Filters the input array using a digital bandpass Butterworth filter. The operation can be performed in place; that is, \mathbf{x} and \mathbf{y} can be the same array.

Parameters

Input	\mathbf{x}	double-precision array	input data
	\mathbf{n}	integer	
number of elements in \mathbf{x}			
	$\mathbf{f s}$	double-precision	double-precision
fl			
	$\mathbf{f h}$	double-precision integer	lower cutoff frequency higher cutoff frequency filter order
Output	\mathbf{y}	double-precision array	filtered data

Return Value

status	integer	refer to error codes in Appendix A

Example

```
/* Generate a random signal and filter it using a fifth order bandpass
Butterworth filter. The pass band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh;
int n, order;
int status;
n = 256;
fs=1000.0;
fl = 200.0;
fh = 300.0;
order = 5;
Uniform (n, 17, x);
status = Bw_BPF (x, n, fs, fl, fh, order, y);
```


Bw BSF

```
int status = Bw_BSF (double x [ ], int n, double fs, double fl, double fh,
    int order, double y [ ]);
```


Purpose

Filters the input array using a digital bandstop Butterworth filter. The operation can be performed in place; that is, \mathbf{x} and \mathbf{y} can be the same array.

Parameters

Input	\mathbf{x}	double-precision array	input data
	\mathbf{n}	integer	
number of elements in \mathbf{x}			
	$\mathbf{f s}$	double-precision	double-precision
fl			
	$\mathbf{f h}$	double-precision integer	lower cutoff frequency higher cutoff frequency filter order
Output	\mathbf{y}	double-precision array	filtered data

Return Value

status	integer	refer to error codes in Appendix A

Example

```
/* Generate a random signal and filter it using a fifth order bandstop
Butterworth filter. The stop band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh;
int n, order;
int status;
n = 256;
fs=1000.0;
fl = 200.0;
fh = 300.0;
order = 5;
Uniform (n, 17, x);
status = Bw_BSF (x, n, fs, fl, fh, order, y);
```


Bw_CascadeCoef

```
int status = Bw_CascadeCoef (double fs, double fL, double fH, IIRFilterPtr
    filterInformation);
```


Purpose

Generates the set of cascade form filter coefficients to implement an IIR filter as specified by the Butterworth filter model.
filterInformationis the pointer to the filter structure which contains the filter coefficients and the internal filter information. You must allocate this structure by calling AllocIIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first call FreeIIRFilterPtr to free the present filter structure and then call AllocIIRFilterPtr with the new type and order parameters before calling this design function.

If the type and order remain the same, and you can call this IIR design function without calling FreeIIRFilterPtr and AllocIIRFilterPtr. In this case, you should properly reset the filtering operation for that structure by calling ResetIIRFilter before the first call to IIRCascadeFiltering.

Parameters

Input	fs fL	FH	double-precision double-precision
Output	filterInformation	Specifies the sampling frequency in Hz. Specifies the desired lower cutoff frequency of the filter in Hz. Specifies the desired upper cutoff frequency of the filter in Hz	

Return Value

status	integer	Refer to error codes in Appendix A.

Example

```
/* Design a cascade lowpass Butterworth IIR filter */
double fs, fl, fh, x[256], y[256];
int type,order,n;
IIRFilterPtr filterInfo;
n = 256;
fs = 1000.0;
fl = 200.0;
order = 5;
type = 0; /* lowpass */
Uniform(n,17,x);
filterInfo = AllocIIRFilterPtr(type,order);
if(filterInfo!=0) {
        Bw_CascadeCoef(fs,fl,fh,filterInfo);
        IIRCascadeFiltering(x,n,filterInfo,y);
        FreeIIRFilterPtr(filterInfo);
}
```


Bw_Coef

int status $=\mathbf{B w}$ _Coef (int type, int order, double fs double fL, double fH, double a[], int na, doubleb[], int nb);

Purpose

Generates the set of filter coefficients to implement an IIR filter as specified by the Butterworth filter model. The type parameter has the following valid values.

$$
\text { type }= \begin{cases}0 & \text { lowpass filter, } \mathbf{f H} \text { is not used. } \\ 1 & \text { highpass filter, } \mathbf{f H} \text { is not used. } \\ 2 & \text { bandpass filter } \\ 3 & \text { bandstop filter }\end{cases}
$$

$\mathbf{a}[\mathbf{n a}]$ and $\mathbf{b}[\mathbf{n b}]$ are the reverse and forward filter coefficients. The actual filtering is achieved by using the function IIRFiltering.

$$
y_{n}=\frac{1}{a_{0}}\left(\sum_{i=0}^{n b-1} b_{i} x_{n-i}-\sum_{i=1}^{n a-1} a_{i} y_{n-i}\right)
$$

Parameters

Input	type order fs fL fH na nb	integer integer double-precision double-precision double-precision integer integer	controls the filter type of the Butterworth IIR filter coefficients. order of the IIR filter. sampling frequency in Hz . desired lower cutoff frequency of the filter in Hz . desired higher cutoff frequency of the filter in Hz. number of coefficients in the a coefficient array. number of coefficients in the \mathbf{b} coefficient array.
Output	a	double-precision array double-precision array	array containing the reverse coefficients of the designed IIR filter. array containing the forward coefficients of the designed IIR filter.

Return Value

status	integer	refer to error codes in Appendix A

Bw_HPF

```
int status = Bw_HPF (double x [ ], int n, double fs, double fc, int order, double y [ ] );
```


Purpose

Filters the input array using a digital highpass Butterworth filter. The operation can be performed in place; that is, \mathbf{x} and \mathbf{y} can be the same array.

Parameters

Input	\mathbf{x}	double-precision array	input data
	\mathbf{n}	integer	number of elements in \mathbf{x}
	$\mathbf{f s}$	double-precision	sampling frequency
	fc	double-precision	cutoff frequency
integer	filter order		
Output	\mathbf{y}	double-precision array	filtered data

Return Value

status	integer	refer to error codes in Appendix A

Example

```
/* Generate a random signal and filter it using a fifth order highpass
Butterworth filter. */
double x[256], y[256], fs, fc;
int n, order;
int status;
n = 256;
fs=1000.0;
fc = 200.0;
order = 5;
Uniform (n, 17, x);
status = Bw_HPF (x, n, fs, fc, order, y);
```


Bw_LPF

int status = Bw_LPF (double $\mathbf{x}[$], int \mathbf{n}, double fs, double fc, int order, double $\mathbf{y}[$] ;

Purpose

Filters the input array using a digital lowpass Butterworth filter. The operation can be performed in place; that is, \mathbf{x} and \mathbf{y} can be the same array.

Parameters

Input	\mathbf{x}	double-precision array	input data
	\mathbf{n}	integer	number of elements in \mathbf{x}
	$\mathbf{f s}$	double-precision	sampling frequency
	fc	double-precision	cutoff frequency
integer	filter order		
Output	\mathbf{y}	double-precision array	filtered data

Return Value

status	integer	refer to error codes in Appendix A

Example

```
/* Generate a random signal and filter it using a fifth order lowpass
Butterworth filter. */
double x[256], y[256], fs, fc;
int n, order;
int status;
n = 256;
fs=1000.0;
fc = 200.0;
order = 5;
Uniform (n, 17, x);
status = Bw_LPF (x, n, fs, fc, order, y);
```


CascadeToDirectCoef

int status = CascadeToDirectCoef (IIRFilterPtr filterInformation, double a[], int na, doubleb[], int nb);

Purpose

Converts from the cascade IIR coefficients contained by the filterInformation structure to direct form IIR coefficients in arrays a and b. These two arrays must be allocated as for the old-style direct coefficient design functions (Bw_Coef,...).

For lowpass and highpass type filters, the direct coefficient arrays must have size (order +1).
For bandpass and bandstop type filters, the direct coefficient arrays must have size
(2*order +1).

Parameters

Input	filterInformation	IIRFilterPtr	filterInformation is the pointer to the filter structure which contains the filter coefficients and the internal filter information. You must allocate this structure by calling AllocIIRFilterPtr before calling one of the cascade IIR filter design functions. Please refer to the function AllocIIRF ilterPtr for further information about the filter structure. Specifies the number of coefficients in array a. na=order+1 for low or high pass filters na=2*order+1 for bandpass or bandstop filters. Specifies the number of coefficients in the B
na	nb	integer	integer
nb=order+1 for low or high pass filters			
nb = 2*order+1 for bandpass or bandstop			
filters.			

Return Value

status	integer	Refer to error codes in Appendix A.

Ch_BPF

```
int status = Ch_BPF (double x [ ], int n, double fs, double fl, double fh,
    double ripple, int order, double y []);
```


Purpose

Filters the input array using a digital bandpass Chebyshev filter. The operation can be performed in place; that is, \mathbf{x} and \mathbf{y} can be the same array.

Parameters

Input	\mathbf{x}	double-precision array	input data
	\mathbf{n}	integer	number of elements in \mathbf{x}
	$\mathbf{f s}$	double-precision	sampling frequency
	$\mathbf{f l}$	double-precision	lower cutoff frequency
	fh	double-precision	higher cutoff frequency
	ripple	double-precision	pass band ripples in dB
	order	integer	filter order
Output	\mathbf{y}	double-precision array	filtered data

Return Value

status	integer	refer to error codes in Appendix A

Example

```
/* Generate a random signal and filter it using a fifth order bandpass
Chebyshev filter. The pass band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh, ripple;
int n, order;
int status;
n = 256;
fs = 1000.0;
fl = 200.0;
fh = 300.0;
ripple = 0.5;
order = 5;
Uniform (n, 17, x);
status = Ch_BPF (x, n, fs, fl, fh, ripple, order, y);
```


Ch_BSF

int status $=\mathbf{C h}$ _BSF (double $\mathbf{x}[$], int \mathbf{n}, double fs, double fl, double fh, double ripple, int order, double $\mathbf{y}[$]);

Purpose

Filters the input array using a digital bandstop Chebyshev filter. The operation can be performed in place; that is, \mathbf{x} and \mathbf{y} can be the same array.

Parameters

Input	\mathbf{x}	double-precision array	input data
	\mathbf{n}	integer	number of elements in \mathbf{x}
	$\mathbf{f s}$	double-precision	sampling frequency
	fl	double-precision	lower cutoff frequency
	fh	double-precision	higher cutoff frequency
	ripple	double-precision	pass band ripples in dB
	order	integer	filter order
Output	\mathbf{y}	double-precision array	filtered data

Return Value

status	integer	refer to error codes in Appendix A

Example

```
/* Generate a random signal and filter it using a fifth order bandstop
Chebyshev filter. The stop band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh, ripple;
int n, order;
int status;
n = 256;
fs = 1000.0;
fl = 200.0;
fh = 300.0;
ripple = 0.5;
order = 5;
Uniform (n, 17, x);
status = Ch_BSF (x, n, fs, fl, fh, ripple, order, y);
```


Ch_CascadeCoef

int status $=\mathbf{C h}$ _CascadeCoef (double fs, double fL, double $\mathbf{f H}$, double ripple, IIRFilterPtr filterInformation);

Purpose

Generates the set of cascade form filter coefficients to implement an IIR filter as specified by the Chebyshev filter model.
filterInformation is the pointer to the filter structure which contains the filter coefficients and the internal filter information. You must allocate this structure by calling AllocIIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first call FreeIIRFilterPtr to free the present filter structure and then call AllocIIRFilterPtr with the new type and order parameters before calling this design function.

If the type and order remain the same, and you can call this IIR design function without calling FreeIIRFilterPtr and AllocIIRFilterPtr. In this case, you should properly reset the filtering operation for that structure by calling ResetIIRFilter before the first call to IIRCascadeFiltering.

Parameters

Input	fs fL fH ripple	double-precision double-precision double-precision double-precision	Specifies the sampling frequency in Hz . Specifies the desired lower cutoff frequency of the filter in Hz . Specifies the desired upper cutoff frequency of the filter in Hz . Specifies the amplitude of the stop band ripple in decibels.
Output	filterInformation	IIRFilterPtr	filterInformation is the pointer to the filter structure whichcontains the filter coefficients and the internal filter information. You must allocate this structure by calling AllocIIRFilterPtr before calling this cascade IIR filter design function. Please refer to the function AllocIIRFilterPtr for further information about the filter structure.

Return Value

status	integer	Refer to error codes in Appendix A.

Example

```
/* Design a cascade lowpass Chebyshev IIR filter */
double fs, fl, fh, ripple, x[256], y[256];
int type,order,n;
IIRFilterPtr filterInfo;
n = 256;
```

```
fs = 1000.0;
fl = 200.0;
ripple = 0.5;
order = 5;
type = 0; /* lowpass */
Uniform(n,17,x);
filterInfo = AllocIIRFilterPtr(type,order);
if(filterInfo!=0) {
    Ch_CascadeCoef(fs,fl,fh,ripple,filterInfo);
    IIRCascadeFiltering(x,n,filterInfo,y);
    FreeIIRFilterPtr(filterInfo);
}
```


Ch_Coef

```
int status = Ch_Coef (int type, int order, double fs, double fL, double fH,
``` double ripple, double \(\mathbf{a}\) [], int na, double b[], int nb);

\section*{Purpose}

Generates the set of filter coefficients to implement an IIR filter as specified by the Chebyshev filter model. The type parameter has the following valid values.
\[
\text { type }= \begin{cases}0 & \text { lowpass filter, } \mathbf{f H} \text { is not used } \\ 1 & \text { highpass filter, } \mathbf{f H} \text { is not used. } \\ 2 & \text { bandpass filter } \\ 3 & \text { bandstop filter }\end{cases}
\]
\(\mathbf{a}[\mathbf{n a}]\) and \(\mathbf{b}[\mathbf{n b}]\) are the reverse and forward filter coefficients. The actual filtering
\[
y_{n}=\frac{1}{a_{0}}\left(\sum_{i=0}^{n b-1} b_{i} \quad x_{n-i}-\sum_{i=1}^{n a-1} a_{i} y_{n-1}\right)
\]
is achieved by using the function IIRFiltering.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & type
order
fs
fL
fH
ripple
na
nb & \begin{tabular}{l}
integer \\
integer \\
double-precision \\
double-precision \\
double-precision \\
double-precision \\
integer \\
integer
\end{tabular} & \begin{tabular}{l}
controls the filter type of the Chebyshev IIR filter coefficients. order of the IIR filter. sampling frequency in Hz . desired lower cutoff frequency of the filter in Hz. desired higher cutoff frequency of the filter in Hz . amplitude of the stopband ripple in decibels. \\
number of coefficients in the a coefficient array. \\
number of coefficients in the \(\mathbf{b}\) coefficient array.
\end{tabular} \\
\hline Output & a & double-precision array double-precision array & array containing the reverse coefficients of the designed IIR filter. array containing the forward coefficients of the designed IIR filter. \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{Ch_HPF}
```

int status = Ch_HPF (double x [ ], int n, double fs, double fc, double ripple,
int order, double y []);

```

\section*{Purpose}

Filters the input array using a digital highpass Chebyshev filter. The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & input data \\
& \(\mathbf{n}\) & integer & number of elements in \(\mathbf{x}\) \\
& \(\mathbf{f s}\) & double-precision & sampling frequency \\
& fc \\
& ripple \\
order & double-precision & double-precision \\
integer & cutoff frequency \\
pass band ripples in dB \\
Output & \(\mathbf{y}\) & double-precision array & filter order data \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate a random signal and filter it using a fifth order highpass
Chebyshev filter. */
double x[256], y[256], fs, fc, ripple;
int n, order;
int status;
n = 256;
fs=1000.0;
fc = 200.0;
ripple = 0.5;
order = 5;
Uniform (n, 17, x);
status = Ch_HPF (x, n, fs, fc, ripple, order, y);

```

\section*{Ch_LPF}
```

int status = Ch_LPF (double x [ ], int n, double fs, double fc, double ripple,
int order, double y[]);

```

\section*{Purpose}

Filters the input array using a digital lowpass Chebyshev filter. The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & input data \\
& \(\mathbf{n}\) & integer & number of elements in \(\mathbf{x}\) \\
& \(\mathbf{f s}\) & double-precision & sampling frequency \\
& fc \\
& ripple \\
order & double-precision & double-precision \\
integer & cutoff frequency \\
pass band ripples in dB \\
Output & \(\mathbf{y}\) & double-precision array & filter order \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate a random signal and filter it using a fifth order lowpass
Chebyshev filter. */
double x[256], y[256], fs, fc, ripple;
int n, order;
int status;
n = 256;
fs=1000.0;
fc = 200.0;
ripple = 0.5;
order = 5;
Uniform (n, 17, x);
status = Ch_LPF (x, n, fs, fc, ripple, order, y);

```

\section*{Chirp}
int status = Chirp (int n, double amp, double f1, double f2, double x[]);

\section*{Purpose}

Generates an array containing a chirp pattern. The output array \(\mathbf{x}\) is generated according to the following formula.
\[
x_{i}=a m p * \sin \left(\left(\frac{a}{2} i+b\right) i\right)
\]
where
\[
\begin{aligned}
& \mathrm{a}=2 \pi^{*}(\mathbf{f} 2 \mathbf{- f} \mathbf{1}) / \mathrm{n} \\
& \mathrm{~b}=2 \pi^{*} \mathbf{f} \mathbf{1}
\end{aligned}
\]
\(\mathbf{f 1}=\) beginning frequency, cycles/sample
f2 \(=\) ending frequency, cycles/sample

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \[
\begin{aligned}
& \text { n } \\
& \text { amp } \\
& \text { f1 } \\
& \\
& \text { f2 }
\end{aligned}
\] & \begin{tabular}{l}
integer \\
double-precision double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
number of samples to generate. amplitude of the resulting signal. beginning frequency of the resulting signal in normalized units of cycles/sample. \\
ending frequency of the resulting signal in normalized units of cycles/sample.
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision array & contains the generated chirp pattern. \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{Clear1D}
int status = Clear1D (double \(\mathbf{x}[\)], int \(\mathbf{n})\);

\section*{Purpose}

Sets the elements of the \(\mathbf{x}\) array to 0.0 .

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{n}\) & integer & number of elements in \(\mathbf{x}\) \\
\hline Output & \(\mathbf{x}\) & double-precision array & cleared array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Clip}
int status = Clip (double \(\mathbf{x}[\)], int n, double upper, double lower, double \(\mathbf{y}\) []);

\section*{Purpose}

Clips the input array values. The range of the resulting output array is [lower : upper]. The \(i^{\text {ih }}\) element of the resulting array is obtained by using the following formula.
\[
\mathrm{y}_{\mathrm{i}}=\left\{\begin{array}{lll}
\text { upper } & \text { if } & \mathrm{x}_{\mathrm{i}}>\text { upper } \\
\text { lower } & \text { if } & \mathrm{x}_{\mathrm{i}}<\text { lower } \\
\mathrm{x}_{\mathrm{i}} & & \text { otherwise }
\end{array}\right.
\]

The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\(\left.\)\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer \\
n \\
upper \\
lower
\end{tabular} & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular}
\end{tabular} \begin{tabular}{l}
input data \\
number of elements in \(\mathbf{x}\) \\
upper limit \\
lower limit
\end{tabular} \right\rvert\, \begin{tabular}{llll}
& Output & \(\mathbf{y}\) & double-precision array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Contingency_Table}
```

int status = Contingency_Table (int s, int k, int void *y, double *Test_Stat,
double *Sig);

```

\section*{Purpose}

Creates a contingency table in which objects of experimentation are classified and tallied according to two schemes of categorization. This function can be used to perform a test of homogeneity or a test of independence.

Note: For both tests, the math is identical. It is not necessary to specify which test is being applied. The only difference is in the hypothesis being tested.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & s & integer & \begin{tabular}{l}
number of random samples taken in the test \\
of homogeneity, or the number of categories \\
in the first categorization scheme in the test \\
of independence. \\
number of categories in the test of \\
homogeneity, or the number of categories in \\
the second scheme in the test of \\
independence. \\
contingency table, indexed as an s by k \\
matrix.
\end{tabular} \\
\hline Output & Test_Stat & double-precision & \begin{tabular}{l}
used to calculate Sig. If the hypothesis is \\
true, Test_Stat is known to come from a \\
chi-square distribution with \\
(s-1)*(k-1) degrees of freedom. \\
level of significance at which the hypothesis \\
must be rejected.
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Using This Function}

A contingency table is a table in which objects of experimentation are classified and tallied according to two schemes of categorization. For example, if the objects of experimentation are individuals, one scheme might be political affiliation: Know-Nothing, Tory, Whig, Mugwump, and so on. Another scheme might be to classify individuals according to how they vote on some issue.

\section*{Chi-Square Test of Homogeneity}

Take a random sample of some fixed sized from each of the categories in one categorization scheme for the chi-square test of homogeneity. For each of the samples, categorize the objects of experimentation according to the second scheme, and tally them. For example, you might pick 100 Know-Nothings, 100 Whigs, 100 Tories and 100 Mugwumps. Count the number of individuals who vote a certain way for each category. This produces the following contingency table.
\begin{tabular}{|l|l|l|l|}
\hline & Yes & No & Undecided \\
\hline Know-Nothing & 36 & 24 & 40 \\
Whig & 12 & 53 & 35 \\
Tory & 61 & 11 & 28 \\
Mugwump & 83 & 3 & 14 \\
\hline
\end{tabular}

Notice that the sum of each of the rows equals 100.
Test the hypothesis that the populations from which each sample is taken are identically distributed with respect to the second categorization scheme. For example, you can test the hypothesis that the four samples of politically affiliated individuals are distributed identically with respect to the way they vote. If this hypothesis is true, it means that a Mugwump selected at random is just as likely to vote yes as a Whig selected at random.

\section*{Chi-Square Test of Independence}

Take only one sample from the total population for the chi-square test of independence.
Categorize each object of experimentation and tally them in the two categorization schemes. If you select 500 individuals, for example, you might arrive at the following table.
\begin{tabular}{|l|l|l|l|}
\hline & Yes & No & Undecided \\
\hline Know-Nothing & 18 & 15 & 18 \\
Whig & 55 & 93 & 38 \\
Tory & 101 & 83 & 20 \\
Mugwump & 16 & 31 & 12 \\
\hline
\end{tabular}

Notice that the sum of each row is different, but that the total number of individuals tallied is 500.

Test the hypothesis that the categorization schemes are independent. For example, if you choose a person at random and he or she turns out to be a Mugwump, then the hypothesis says his or her political affiliation has no impact on how he or she votes on the selected issue.

\section*{Testing The Hypothesis}

Whichever test is being used, a level of significance must be chosen. This is how likely you want it to be that a true hypothesis is rejected. Ordinarily you do not want it to be very likely, so the level of significance should be small (0.05 , or \(5 \%\), is a common choice).

The output parameter \(\mathbf{S i g}\) is the level of significance at which the hypothesis is rejected. \(\operatorname{Sig}=\operatorname{Prob}(\chi \geq\) Test_Stat \()\), where \(\chi\) is a random variable from the chi-square distribution with
\((\mathrm{s}-1)(\mathrm{k}-1)\) degrees of freedom. If Sig is less than the level of significance, the hypothesis must be rejected.

\section*{Formulas}

Let \(y p, q\) be the number of occurrences in the \((p, q)^{\text {th }}\) cell of the contingency table for \(p=0,1, \ldots\), (\(\mathrm{s}-1\)) and \(\mathrm{q}=0,1, \ldots,(\mathrm{k}-1)\).

Let
\[
\begin{aligned}
& y_{p}=\sum_{q=0}^{k-1} y_{p, q} \\
& y_{q}=\sum_{p=0}^{s-1} y_{p, q} \\
& y=\sum_{p=0}^{s-1} \sum_{q=0}^{k-1} y_{p, q} \\
& e_{p, q}=\left(y_{p} * y_{q}\right) y \\
& \text { Test_Stat }=\sum_{p=0}^{s-1} \sum_{q=0}^{k-1} \frac{\left[y_{p, q}-e_{p, q}\right]^{2}}{e_{p, q}}
\end{aligned}
\]

\section*{Example}
/* Generate random contingency table. Because rows will not have identical
sums, use the chi-square test of independence. */
int \(s=10, \mathrm{k}=10, \mathrm{y}[10][10], \mathrm{i}, \mathrm{j}, ~ s t a t u s ;\)
double Test_Stat, Sig, temp[1];
for (i=0; i<s; i++)
 for (\(j=0 ; j<k ; j++\))
 \{
 WhiteNoise (1, 5, ,17, temp);
 temp[0] += 6.0;
 y[i][j] = (int) temp[0];
 \}
status \(=\) Contingency_Table (s, k, y, \&Test_Stat, \&Sig);

\section*{Convolve}
int status = Convolve (double \(\mathbf{x}[\)], int \(\mathbf{n}\), double \(\mathbf{y}[\)], int \(\mathbf{m}\), double \(\mathbf{c x y}[\)] ;

\section*{Purpose}

Finds the convolution of the \(\mathbf{x}\) and \(\mathbf{y}\) input arrays. The convolution is obtained by the following formula.
\[
c x y_{i}=\sum_{k=a}^{b} x_{k} * y_{i-k}
\]
where \begin{tabular}{rlr}
\(a=0, b=i\) & for \(0 \leq i<m\) \\
\(a=i-m+1, b=i\) & & for \(m \leq i<n\) \\
\(a\) & \(=i-m+1, b=n-1\) & \\
for \(n \leq i \leq n+m-1\)
\end{tabular}

Note: This formula description assumes that \(m \leq n\). For \(m>n\), exchange \((x, y)\) and \((m, n)\) in the above equations.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & \(\mathbf{x}\) input array \\
& \(\mathbf{n}\) & integer \\
double-precision array \\
number of elements in \(\mathbf{x}\) \\
integer & \begin{tabular}{l}
\(\mathbf{y}\) input array \\
number of elements in \(\mathbf{y}\)
\end{tabular} \\
\hline Output & \(\mathbf{m}\) & double-precision array & convolution array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Using This Function}

The size of the output array must be at least \((\mathbf{n}+\mathbf{m}-1)\) elements long. This algorithm executes more efficiently if the sizes of the input arrays are a power of two.

\section*{Example}
```

/* Generate two arrays with random numbers and find their
convolution. */
double x[256], y[256], cxy[512];
int n, m;

```
```

n = 256;
m = 256;
Uniform (n, 17, x);
Uniform (m, 17, y);
Convolve (x, n, y, m, cxy);

```

\section*{Copy1D}
int status = Copy1D (double \(\mathbf{x}\), int \(\mathbf{n}\), double \(\mathbf{y}[\)] ;

\section*{Purpose}

Copies the elements of the \(\mathbf{x}\) array. This function is useful to duplicate arrays for in-place operations.

\section*{Parameters}
\(\left.\)\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular}\(\quad\)\begin{tabular}{l}
double-precision array \\
integer
\end{tabular}\(\quad\)\begin{tabular}{l}
input array \\
number of elements in \(\mathbf{x}\)
\end{tabular} \right\rvert\, \begin{tabular}{l}
Output
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Correlate}
int status = Correlate (double \(\mathbf{x}[\)], int \(\mathbf{n}\), double \(\mathbf{y}[\)], int \(\mathbf{m}\), double \(\mathbf{r x y}[\)] ;

\section*{Purpose}

Finds the correlation of the input arrays. The correlation is obtained by the following formula.
\[
\begin{aligned}
& \operatorname{Rxy}_{i}=\sum_{k=0}^{m-l} x_{k+n-l-i} * y_{k} \\
& \mathrm{y}_{\mathrm{j}}=0 \text { when } \mathrm{j}<0 \text { or } \mathrm{j} \geq \mathrm{m} \\
& \text { and } \mathrm{x}_{\mathrm{i}}=0 \text { when } \mathrm{j}<0 \text { or } \mathrm{j} \geq \mathrm{n}
\end{aligned}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & \(\mathbf{y}\) input array \\
integer \\
nomble-precision array & \begin{tabular}{l}
\(\mathbf{y}\) input array \\
integer
\end{tabular} & number of elements in \(\mathbf{y}\) \\
\hline Output & \(\mathbf{m}\) & double-precision array & correlation array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Using This Function}

The size of the output array must be at least \((\mathbf{n}+\mathbf{m}-1)\) elements long.

\section*{Example}
```

/* Generate two arrays with random numbers and find their correlation. */
double x[256], y[256], cxy[512];
int n, m;
n = 256;
m=256;
Uniform (n, 17, x);
Uniform (m, 17, y);
Correlate (x, n, y, m, cxy);

```

\section*{CosTaperedWin}
int status \(=\mathbf{C o s T a p e r e d W i n}(\) double \(\mathbf{x}[\)], int \(\mathbf{n})\);

\section*{Purpose}

Applies a cosine tapered window to the input sequence X . If Y represents the output sequence, the elements of Y are obtained from the equation:
\[
y_{i}= \begin{cases}0.5 x_{i}(1-\cos (2 p i / n)) & i=0,1, \ldots, m-1 \\ x_{i} & i=m, m+1, \ldots, n-m-1 \\ 0.5 x_{i}(1-\cos (2 p i / n)) & i=n-m, n-m+1, \ldots, n-1\end{cases}
\]
where \(\mathrm{m}=\) round \((\mathbf{n} / 10)\)

Parameters
\(\left.\)\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular}\(\quad\)\begin{tabular}{l}
double-precision array \\
integer
\end{tabular}\(\quad\)\begin{tabular}{l}
contains the input signal. \\
number of elements in the input array.
\end{tabular} \right\rvert\, \begin{tabular}{l}
Output
\end{tabular} \(\mathbf{x}\) double-precision array \begin{tabular}{l}
contains the signal after applying the \\
Tapered Cosine window.
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{CrossPowerSpectrum}
```

int status = CrossPowerSpectrum (double x [], double y [], int n, double dt,
double magSxy [ ], double phaseSxy [ ], double *df);

```

\section*{Purpose}

Computes the single-sided, scaled cross power spectrum of two time-domain signals. The cross power spectrum is defined as:
\[
S x y=F F T(Y) F F T^{*}(X) /\left(n^{2}\right)
\]
where \(\mathbf{n}\) is the number of points in arrays X and Y. magSxy and phaseSxy are single-sided magnitude and phase spectra of Sxy.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
double-precision array \\
n
\end{tabular} & \begin{tabular}{l}
time-domain signal X. \\
integer
\end{tabular} \\
time-domain signal Y. \\
The number of elements in the input \\
array. Valid Values: Powers of 2. \\
dt is the sample period of the time- \\
domain signal, usually in seconds. \\
\(\mathbf{d t}=1 / \mathrm{fs}\), where fs is the sampling \\
frequency of the time-domain signal.
\end{tabular}
(continues)

\section*{Parameters (Continued)}
\begin{tabular}{|l|l|l|l|}
\hline Output & magSxy & double-precision array & \begin{tabular}{l}
magSxy is the single-sided magnitude \\
cross power spectrum between signals \\
X and Y in volts RMS squared if the \\
input signals are in volts. If the input \\
signals are not in volts, the results are \\
in input signal units RMS squared. \\
This array must be at least n/2 \\
elements long. \\
phaseSxy is the single-sided phase \\
cross spectrum in radians showing the \\
difference between the phases of signal \\
Y and signal X. This array must be at \\
least \(\mathbf{n} / 2\) elements long. \\
Points to the frequency interval, in \\
hertz, if dt is in seconds. \\
*df = 1/(n*dt)
\end{tabular} \\
\hline df & double-precision array
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{CrossSpectrum}
```

int status = CrossSpectrum (double x [ ], double y [ ], int n, double realSxy [ ],
double imagSxy []);

```

\section*{Purpose}

Computes the double-sided cross power spectrum, Sxy, of the input sequences X and Y according to the following formula.
\[
\text { CrossSpectrum }=\frac{F F T^{*}(X) F F T(Y)}{n^{2}}
\]
where \(\mathbf{n}\) is the number of samples in both input sequences, and \(\mathrm{FFT} *[\mathrm{X}]\) is the complex conjugate of FFT[X]. \(\mathbf{n}\) must be a power of 2 . The input sequences are copied to internal buffers before the FFTs are computed. The output arrays are the real and imaginary parts of the cross spectrum CrossSpectrum.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
time-domain signal X. \\
time-domain signal Y. \\
number of elements in the input arrays. \\
The number must be a power \\
of 2.
\end{tabular} \\
\hline Output & realSxy & double-precision array & \begin{tabular}{l}
real part of the double-sided cross \\
power spectrum between signals X and \\
Y. The size of this array must be \(\mathbf{n}\). \\
imaginary part of the double-sided \\
cross power spectrum between signals \\
X and Y. The size of this array must be \\
\(\mathbf{n}\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{CxAdd}
```

int status = CxAdd (double xr, double xi, double yr, double yi, double *zr,
double *zi);

```

\section*{Purpose}

Adds two complex numbers. The resulting complex number is obtained using the following formulas.
\[
\begin{aligned}
& z r=x r+y r \\
& z i=x i+y i
\end{aligned}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x r}\) & double-precision & real part of \(x\) \\
& \(\mathbf{x i}\) & double-precision \\
& \(\mathbf{y r}\) & double-precision \\
yi & double-precision & real part of \(y\) \\
Output & \(\mathbf{z r}\) & \begin{tabular}{l}
double-precision pointer \\
imaginary part of \(y\)
\end{tabular} \\
\hline double-precision pointer & real part of \(z\) \\
imaginary part of \(z\) \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{CxAdd1D}
```

int status = CxAdd1D (double xr [ ], double xi [ ], double yr [ ] , double yi [ ],
int n,double zr [], double zi []);

```

\section*{Purpose}

Adds two 1D complex arrays. The \(\mathrm{i}^{\text {th }}\) element of the resulting complex array is obtained using the following formulas.
\[
\begin{aligned}
& z r_{i}=x r_{i}+y r_{i} \\
& z i_{i}=x i_{i}+y i_{i}
\end{aligned}
\]

The operations can be performed in place; that is, the input and output complex arrays can be the same.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \[
\begin{aligned}
& \mathrm{xr} \\
& \mathrm{xi} \\
& \mathrm{yr} \\
& \mathrm{yi} \\
& \mathrm{n}
\end{aligned}
\] & double-precision array double-precision array double-precision array double-precision array integer & real part of \(x\) imaginary part of \(x\) real part of \(y\) imaginary part of \(y\) number of elements \\
\hline Output & \[
\begin{aligned}
& \mathbf{z r} \\
& \mathbf{z i}
\end{aligned}
\] & double-precision array double-precision array & real part of z imaginary part of \(z\) \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{CxDiv}
int status = CxDiv (double xr, double xi, double yr, double yi, double *zr, double *zi);

\section*{Purpose}

Divides two complex numbers. The resulting number is obtained using the following formulas.
\[
\begin{aligned}
& z r=\left(x r^{*} y r+x i^{*} y i\right) /\left(y r^{2}+y i^{2}\right) \\
& z i=\left(x i^{*} y r-x r^{*} y i\right) /\left(y r^{2}+y i^{2}\right)
\end{aligned}
\]

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \[
\begin{aligned}
& \mathrm{xr} \\
& \mathrm{xi} \\
& \mathrm{yr} \\
& \mathrm{yi}
\end{aligned}
\] & double-precision double-precision double-precision double-precision & real part of x imaginary part of \(x\) real part of \(y\) imaginary part of \(y\) \\
\hline Output & \[
\begin{aligned}
& \mathrm{zr} \\
& \mathrm{zi}
\end{aligned}
\] & double-precision double-precision & real part of \(z\) imaginary part of \(z\) \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{CxDiv1D}
```

int status = CxDiv1D (double xr [], double xi[], double yr [], double yi [],
int n,double zr [], double zi []);

```

\section*{Purpose}

Divides two 1D complex arrays. The \(\mathrm{i}^{\text {th }}\) element of the resulting complex array is obtained using the following formula.
\[
\begin{aligned}
& z r_{i}=\left(x r_{i}^{*} y r_{i}+x i_{i}^{*} y i_{i}\right) /\left(y r_{i}^{2}+y i_{i}^{2}\right) \\
& z i_{i}=\left(x i_{i}^{*} * y r_{i}-x r_{i}^{*} y i_{i}\right) /\left(y r_{i}^{2}+y i_{i}^{2}\right)
\end{aligned}
\]
zr can be in place with xr ; zi can be in place with xi.
Parameters
\begin{tabular}{|c|c|c|c|}
\hline Input & \[
\begin{aligned}
& \mathrm{xr} \\
& \mathrm{xi} \\
& \mathrm{yr} \\
& \mathrm{yi} \\
& \mathrm{n}
\end{aligned}
\] & double-precision array double-precision array double-precision array double-precision array integer & real part of \(x\) imaginary part of \(x\) real part of y imaginary part of \(y\) number of elements \\
\hline Output & \[
\begin{aligned}
& \mathrm{zr} \\
& \mathrm{zi}
\end{aligned}
\] & double-precision array double-precision array & real part of z imaginary part of z \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{CxExp}
int status = CxExp (double xr, double xi, double *yr, double *yi);

\section*{Purpose}

Computes the exponential of a complex number. The resulting complex number is obtained using the following formula.
\[
(y r, y i)=e^{(x r, x i)}
\]

Parameters
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x r}\) & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
real part of \(x\) \\
imaginary part of x
\end{tabular} \\
\hline Output & \(\mathbf{y r}\) & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
real part of \(y\) \\
imaginary part of \(y\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{CxLinEv1D}
int status =CxLinEv1D (double \(\mathbf{x r}[\)], double \(\mathbf{x i}[\)], int \(\mathbf{n}\), double ar, double ai, double br, double bi, double yr [], double yi []);

\section*{Purpose}

Performs a complex linear evaluation of a 1D complex array. The \(i^{\text {th }}\) element of the resulting complex array is obtained using the following formulas.
\[
\begin{aligned}
& y r_{i}=a r^{*} x r_{i}-a i * x i_{i}+b r \\
& y i_{i}=a r^{*} x i_{i}+a i * x r_{i}+b i
\end{aligned}
\]

The operations can be performed in place; that is, the input and output complex arrays can be the same.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x r}\) & double-precision array & real part of \(x\) \\
& \(\mathbf{x i}\) & double-precision array \\
integer & imaginary part of \(x\) \\
& \(\mathbf{a r}\) & double-precision & number of elements \\
& \(\mathbf{a i}\) & double-precision \\
br part of a \\
double-precision \\
bi & double-precision & \begin{tabular}{l}
real part of b \\
imaginary part of b
\end{tabular} \\
\hline Output & \(\mathbf{y r}\) & \begin{tabular}{l}
double-precision array \\
double-precision array
\end{tabular} & \begin{tabular}{l}
real part of y \\
imaginary part of \(y\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{CxLn}
int status \(=\mathbf{C x L n}(\) double \(\mathbf{x r}\), double \(\mathbf{x i}\), double * \(\mathbf{y r}\), double * \(\mathbf{y i}\));

\section*{Purpose}

Computes the natural logarithm of a complex number. The resulting complex number is obtained using the following formula.
\[
(y r, y i)=\log _{e}(x r, x i)
\]
where \(\mathrm{e}=2.718 \ldots\)

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x r}\) & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
real part of \(x\) \\
imaginary part of \(x\)
\end{tabular} \\
\hline Output & \(\mathbf{y r}\) & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
real part of \(y\) \\
imaginary part of \(y\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{CxLog}
```

int status = CxLog (double xr, double xi, double *yr, double *yi);

```

\section*{Purpose}

Computes the logarithm (base 10) of a complex number. The resulting complex number is obtained using the following formula.
\[
(y r, y i)=\log _{10}(x r, x i)
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x r}\) & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
real part of \(x\) \\
imaginary part of \(x\)
\end{tabular} \\
\hline Output & \(\mathbf{y r}\) & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
real part of \(y\) \\
imaginary part of \(y\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{CxMul}
int status \(=\mathbf{C x M u l}(\) double \(\mathbf{x r}\), double \(\mathbf{x i}\), double yr, double yi, double *zr, double *zi);

\section*{Purpose}

Multiplies two complex numbers. The resulting complex number is obtained using the following formulas.
\[
\begin{aligned}
& z r=x r^{*} y r-x i^{*} y i \\
& z i=x r^{*} y i+x i^{*} y r
\end{aligned}
\]

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \[
\begin{array}{|l|}
\hline \mathbf{x r} \\
\text { xi } \\
\text { yr } \\
\text { yi } \\
\hline
\end{array}
\] & double-precision double-precision double-precision double-precision & real part of x imaginary part of \(x\) real part of y imaginary part of \(y\) \\
\hline Output & \[
\begin{aligned}
& \mathrm{zr} \\
& \mathrm{zi}
\end{aligned}
\] & double-precision double-precision & real part of \(z\) imaginary part of \(z\) \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{CxMul1D}
int status = CxMul1D (double \(\mathbf{x r}\) [], double \(\mathbf{x i}[\)], double yr [], double yi [], int \(\mathbf{n}\), double \(\mathbf{z r}[\)], double \(\mathbf{z i}[\)]);

\section*{Purpose}

Multiplies two 1D complex arrays. The \(\mathrm{i}^{\text {th }}\) element of the resulting complex array is obtained using the following formulas.
\[
\begin{aligned}
& z r_{i}=x r_{i}^{*} y r_{i}-x i_{i}^{*} * y i_{i} \\
& z i_{i}=x r_{i}^{*} y i_{i}+x i_{i}^{*} y r_{i}
\end{aligned}
\]

The operations can be performed in place; that is, the input and output complex arrays can be the same.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x r}\) & double-precision array & real part of \(x\) \\
xi \\
& \(\mathbf{y r}\) \\
\(\mathbf{y i}\) & \(\mathbf{n}\) double-precision array \\
double-precision array \\
double-precision array \\
integer
\end{tabular}\(\quad\)\begin{tabular}{l}
real part of \(y\) \\
imaginary part of \(y\) \\
number of elements
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{CxPow}
int status = CxPow (double xr, double xi, double a, double *yr, double *yi);

\section*{Purpose}

Computes the power of a complex number. The resulting complex number is obtained using the following formula.
\[
(y r, y i)=(x r, x i)^{a}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x r}\) \\
\(\mathbf{x i}\) \\
\(\mathbf{a}\)
\end{tabular} & \begin{tabular}{l}
double-precision \\
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
real part of \(x\) \\
imaginary part of \(x\) \\
exponent
\end{tabular} \\
\hline Output & \(\mathbf{y r}\) & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
real part of \(y\) \\
imaginary part of \(y\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{CxRecip}
int status = CxRecip (double xr, double xi, double *yr, double *yi);

\section*{Purpose}

Finds the reciprocal of a complex number. The resulting complex number is obtained using the following formulas.
\[
\begin{aligned}
& y r=x r /\left(x r^{2}+x i^{2}\right) \\
& y i=-x i /\left(x r^{2}+x i^{2}\right)
\end{aligned}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x r}\) & \begin{tabular}{l}
double-precision \\
di
\end{tabular} & \begin{tabular}{l}
real part of \(x\) \\
imaginary part of \(x\)
\end{tabular} \\
\hline Output & \(\mathbf{y r}\) & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
real part of \(y\) \\
imaginary part of \(y\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{CxSqrt}
int \(\boldsymbol{s t a t u s}=\mathbf{C x S q r t}(\) double \(\mathbf{x r}\), double \(\mathbf{x i}\), double *yr, double *yi);

\section*{Purpose}

Computes the square root of a complex number. The resulting complex number is obtained using the following formula.
\[
(y r, y i)=(x r, x i)^{1 / 2}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x r}\) & \begin{tabular}{l}
double-precision \\
xi
\end{tabular} & \begin{tabular}{l}
real part of \(x\) \\
double-precision
\end{tabular} \\
\hline Output & \(\mathbf{y r}\) & \begin{tabular}{l}
double-precision \\
double-precision part of \(x\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{CxSub}
int status = CxSub (double xr, double xi, double yr, double yi, double *zr, double *zi);

\section*{Purpose}

Subtracts two complex numbers. The resulting complex number is obtained using the following formulas.
\[
\begin{aligned}
& z r=x r-y r \\
& z i=x i-y i
\end{aligned}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x r}\) & \begin{tabular}{l}
double-precision \\
double-precision \\
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
real part of \(x\) \\
imaginary part of \(x\) \\
yr \\
Output part of \(y\) \\
yi
\end{tabular} \\
& \(\mathbf{z r}\) & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
real part of \(z\) \\
imaginary part of \(z\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{CxSub1D}
```

int status = CxSub1D (double xr [ ], double xi [ ], double yr [ ], double yi [],
int n, double zr [], double zi []);

```

\section*{Purpose}

Subtracts two 1D complex arrays. The \(\mathrm{i}^{\text {th }}\) element of the resulting complex array is obtained using the formulas.
\[
\begin{aligned}
& z r_{i}=x r_{i}-y r_{i} \\
& z i_{i}=x i_{i}-y i_{i}
\end{aligned}
\]

The operations can be performed in place; that is, the input and output complex arrays can be the same.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \[
\begin{array}{|l|}
\hline \text { xr } \\
\text { xi } \\
\text { yr } \\
\text { yi } \\
\text { n } \\
\hline
\end{array}
\] & double-precision array double-precision array double-precision array double-precision array integer & real part of \(x\) imaginary part of \(x\) real part of \(y\) imaginary part of \(y\) number of elements \\
\hline Output & \[
\begin{aligned}
& \mathrm{zr} \\
& \mathrm{zi} \\
& \hline
\end{aligned}
\] & double-precision array double-precision array & real part of \(z\) imaginary part of z \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Decimate}
```

int status = Decimate (double x [ ], int n, int dFact, int ave, double y []);

```

\section*{Purpose}

Decimates the input sequence X by the decimating factor. If Y represents the decimated output sequence, the elements of the sequence Y are obtained using the following equation.
\[
y_{i}= \begin{cases}x_{i * \text { dFact }} & a v e=0 \\ \frac{1}{d \text { Fact }} \sum_{k=0}^{\text {dFact }-I} x_{i^{*} d F a c t+k} & \text { ave }=1\end{cases}
\]
where
\[
\begin{aligned}
& i=0,1,2 \ldots \text { size- } 1 \\
& \text { size }=(\text { int })(\boldsymbol{n} / \boldsymbol{d F a c t}) \text { and is the size of the output sequence }
\end{aligned}
\]

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & & \begin{tabular}{l}
double-precision array \\
integer \\
integer \\
integer
\end{tabular} & \begin{tabular}{l}
contains the input array to be decimated. number of elements in the input array. amount by which to decimate \(\mathbf{x}\) to form y. \\
specifies whether averaging is used in decimating \(\mathbf{x}\).
\end{tabular} \\
\hline Output & y & double-precision array & contains the output array, which is \(\mathbf{x}\) decimated by the dFact. The size of this array must be (int) \(\mathbf{n} / \mathbf{d F a c t}\). \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{Deconvolve}
```

int status = Deconvolve (double y [ ], int ny, double x [ ], int nx, double h[]);

```

\section*{Purpose}

Computes the deconvolution of \(\mathbf{y}\) with \(\mathbf{x} . \mathbf{y}\) is assumed to be the result of the convolution of \(\mathbf{x}\) with some system response. The deconvolution operation is realized using Fourier transform pairs. The output sequence \(\mathbf{h}\) is obtained using the following equation.
\[
\boldsymbol{h}=\operatorname{Inv} F F T\{Y(f) / X(f)\}
\]
where
\(\mathrm{X}(\mathrm{f})\) is the Fourier transform of \(\mathbf{x}\)
\(\mathrm{Y}(\mathrm{f})\) is the Fourier transform of \(\mathbf{y}\)
\(\operatorname{InvFFT}()\) is the inverse Fourier transform

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{y}\) & double-precision array & \begin{tabular}{l}
input array to be deconvolved \\
with \(\mathbf{x .}\) \\
number of elements in \(\mathbf{y}\). \\
input array with which \(\mathbf{y}\) is \\
deconvolved. \\
The number of elements in \(\mathbf{x}\). \\
\(\mathbf{n x} \leq \mathbf{n y}\).
\end{tabular} \\
\hline Output & \(\mathbf{n x}\) & integer \\
double-precision array \\
integer & double-precision array & \begin{tabular}{l}
output array which is \(\mathbf{y}\) deconvolved \\
with \(\mathbf{x}\) This array must be \((\mathbf{n y}-\mathbf{n x}+1)\) \\
elements long.
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{Determinant}
int status \(=\) Determinant \((\) void \(* \mathbf{x}\), int \(\mathbf{n}\), double \(*\) det \()\);

\section*{Purpose}

Finds the determinant of an \(\mathbf{n}\) by \(\mathbf{n} 2 \mathrm{D}\) input matrix.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision 2D array \\
integer
\end{tabular} & \begin{tabular}{l}
input matrix \\
dimension size of input matrix
\end{tabular} \\
\hline Output & det & double-precision & determinant \\
\hline
\end{tabular}

Note: The input matrix must be an n by n square matrix.

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Difference}
```

int status = Difference (double x [], int n, double dt, double xInit,
double xFinal,double y[]);

```

\section*{Purpose}

Finds the discrete difference of the input array. The \(\mathrm{i}^{\text {th }}\) element of the resulting array is obtained using the following formula.
\[
y_{i}=\left[x_{i+1}-x_{i-1}\right] /(2 * d t)
\]
where \(\mathbf{x}_{-1}=\mathbf{x I n i t}\) and \(\mathbf{x}_{\mathrm{n}}=\mathbf{x F i n a l}\).
The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & input array \\
& \(\mathbf{n}\) & integer \\
dt \\
& \(\mathbf{x I n i t}\) & \begin{tabular}{l}
double-precision \\
double-precision \\
nFinal
\end{tabular} & \begin{tabular}{l}
double-precision of elements in \(\mathbf{x}\) \\
sampling interval \\
initial condition \\
final condition
\end{tabular} \\
\hline Output & \(\mathbf{y}\) & double-precision array & differentiated array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
/*Generate an array with random numbers and differentiate it.*/
double \(x[200], y[200]\);
double dt, xInit, xFinal;
int \(n\);
\(\mathrm{n}=200\);
\(d t=0.001 ;\)
xInit \(=-0.5\);
xFinal \(=-0.25\);
Uniform (\(\mathrm{n}, 17, \mathrm{x}\)) ;
Integrate (x, \(n, d t, x I n i t, x F i n a l, y)\);

\section*{Div1D}
int status = Div1D (double \(\mathbf{x}[\)], double \(\mathbf{y}[\)], int \(\mathbf{n}\), double \(\mathbf{z}[\)] ;

\section*{Purpose}

Divides two 1D arrays. The \(\mathrm{i}^{\text {th }}\) element of the output array is obtained using the following formula.
\[
z_{i}=x_{i} / y_{i}
\]

The operation can be performed in place; that is, \(\mathbf{z}\) can be the same array as either \(\mathbf{x}\) or \(\mathbf{y}\).

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
\(\mathbf{x}\) input array \\
\(\mathbf{y}\) input array \\
number of elements to be \\
divided
\end{tabular} \\
\hline Output & \(\mathbf{z}\) & double-precision array & result array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Div2D}
int status \(=\operatorname{Div2D}\left(\operatorname{void} * \mathbf{x}\right.\), void \(* \mathbf{y}\), int \(\mathbf{n}\), int \(\mathbf{m}\), void \(\left.{ }^{*} \mathbf{z}\right)\);

\section*{Purpose}

Divides two 2D arrays. The (\(\left.\mathrm{i}^{\text {th }}, \mathrm{j}^{\text {th }}\right)\) element of the output array is obtained using the following formula.
\[
z_{i, j}=x_{i, j} / y_{i, j}
\]

The operation can be performed in place; that is, \(\mathbf{z}\) can be the same array as either \(\mathbf{x}\) or \(\mathbf{y}\).

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision 2D array \\
double-precision 2D array \\
integer
\end{tabular} & \begin{tabular}{l}
\(\mathbf{x}\) input array \\
\(\mathbf{y}\) input array \\
number of elements in first \\
dimension \\
number of elements in second \\
dimension
\end{tabular} \\
\hline Output & \(\mathbf{m}\) & integer & double-precision 2D array
\end{tabular} result array \begin{tabular}{l}
\\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{DotProduct}
int status = DotProduct (double \(\mathbf{x}[\)], double \(\mathbf{y}\), int \(\mathbf{n}\), double *dotProd);

\section*{Purpose}

Computes the dot product of the \(\mathbf{x}\) and \(\mathbf{y}\) input arrays. The dot product is obtained using the following formula.
\(\operatorname{dotProd}=x \bullet y=\sum_{i=0}^{n-l} x_{i} * y_{i}\)

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & \(\mathbf{x}\) input vector \\
double-precision array \\
\(\mathbf{y}\) & \(\mathbf{y}\) input vector \\
number of elements
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Elp_BPF}
int status = Elp_BPF \((\) double \(\mathbf{x}[]\), int \(\mathbf{n}\), double fs, double fl, double fh,,

double ripple, double atten, int order, double \(\mathbf{y}[]) ;\)

\section*{Purpose}

Filters the input array using a digital bandpass elliptic filter. The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & input data \\
& \(\mathbf{n}\) & integer & number of elements in \(\mathbf{x}\) \\
& fs & double-precision & sampling frequency \\
& fl & double-precision & lower cutoff frequency \\
& fh & double-precision & higher cutoff frequency \\
& ripple & double-precision & pass band ripples in dB \\
& atten & double-precision & stop band attenuation in dB \\
& order & integer & filter order \\
\hline Output & \(\mathbf{y}\) & double-precision array & filtered data \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate a random signal and filter it using a fifth order bandpass
elliptic filter. The pass band is from 200.0 to 300.0 */
double x[256], y[256], fs, fl, fh, ripple, atten;
int n, order;
n = 256;
fs = 1000.0;
fl = 200.0;
fh = 300.0;
ripple = 0.5;
atten = 40.0;
order = 5;
Uniform (n, 17, x);
Elp_BPF (x, n, fs, fl, fh, ripple, atten, order, y);

```

\section*{Elp_BSF}
```

int status = Elp_BSF (double \mathbf{x [ ], int n, double fs, double fl, double fh,}
double ripple, double atten, int order, double y []);

```

\section*{Purpose}

Filters the input array using a digital bandstop elliptic filter. The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & input data \\
& \(\mathbf{n}\) & integer & number of elements in \(\mathbf{x}\) \\
& \(\mathbf{f s}\) & double-precision & sampling frequency \\
& fl & double-precision & lower cutoff frequency \\
& fh & double-precision & higher cutoff frequency \\
& ripple & double-precision & pass band ripples in dB \\
atten & double-precision & stop band attenuation in dB \\
& order & integer & filter order \\
\hline Output & \(\mathbf{y}\) & double-precision array & filtered data \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate a random signal and filter it using a fifth order bandstop
elliptic filter. The stop band is from 200.0 to 300.0 */
double x[256], y[256], fs, fl, fh, ripple, atten;
int n, order;
n = 256;
fs=1000.0;
fl = 200.0;
fh = 300.0;
ripple = 0.5;
atten = 40.0;
order = 5;
Uniform (n, 17, x);
Elp_BSF (x, n, fs, fl, fh, ripple, atten, order, y);

```

\section*{Elp_CascadeCoef}
int status = Elp_CascadeCoef (double fs, double fL, double fH, double ripple, double atten, IIRFilterPtr filterInformation);

\section*{Purpose}

Generates the set of cascade form filter coefficients to implement an IIR filter as specified by the Elliptic (or Cauer) filter model.
filterInformation is the pointer to the filter structure which contains the filter coefficients and the internal filter information. You must allocate this structure by calling AllocIIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first call FreeIIRFilterPtr to free the present filter structure and then call AllocIIRFilterPtr with the new type and order parameters before calling this design function.

If the type and order remain the same, and you can call this IIR design function without calling FreeIIRFilterPtr and AllocIIRFilterPtr. In this case, you should properly reset the filtering operation for that structure by calling ResetIIRFilter before the first call to IIRCascadeFiltering.

\section*{Parameters}
\(\left.\begin{array}{|l|l|l|l|}\hline \text { Input } & \text { fs } & \text { double-precision } \\
\text { fL } & \text { double-precision } & \begin{array}{l}\text { Specifies the sampling frequency in Hz. } \\
\text { Specifies the desired lower cutoff } \\
\text { frequency of the filter in Hz. }\end{array} \\
\text { ripple } & \text { atten } & \text { double-precision } & \begin{array}{l}\text { Specifies the desired upper cutoff } \\
\text { frequency of the filter in Hz } \\
\text { double-precision }\end{array} \\
\text { Opecifies the amplitude of the stopband } \\
\text { ripple in decibels. } \\
\text { Specifies the stopband attenuation, in } \\
\text { decibels, of the IIR filter to be designed. }\end{array}\right]\)\begin{tabular}{l}
filterInformation \\
double-precision \\
IIRFilterPtr \\
\begin{tabular}{l}
filterInformation is the pointer to the \\
filter structure which contains the filter \\
coefficients and the internal filter \\
information. You must allocate this \\
structure by calling \\
AllocIIRFilterPtr before calling \\
this cascade IIR filter design function. \\
Please refer to the function \\
AllocIIRFilterPtr for further \\
information about the filter structure.
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
Refer to error codes in \\
Appendix A.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Design a cascade lowpass Elliptic IIR filter */
double fs, fl, fh, ripple, atten, x[256], y[256];
int type,order,n;

```
```

IIRFilterPtr filterInfo;
n = 256;
fs = 1000.0;
fl = 200.0;
ripple = 0.5;
atten = 40.0;
order = 5;
type = 0; /* lowpass */
Uniform(n,17,x);
filterInfo = AllocIIRFilterPtr(type,order);
if(filterInfo!=0) {
Elp_CascadeCoef(fs,fl,fh,ripple,atten,filterInfo);
IIRCascadeFiltering(x,n,filterInfo,y);
FreeIIRFilterPtr(filterInfo);
}

```

\section*{Elp_Coef}
int status = Elp_Coef (int type, int order, double fs, double fL, double fH, double ripple, double atten, double \(\mathbf{a}[\)], int na, doubleb[], int nb);

\section*{Purpose}

Generates the set of filter coefficients to implement an IIR filter as specified by the Elliptic (or Cauer) filter model. The type parameter has the following valid values.
\[
\text { type }= \begin{cases}0 & \text { lowpass filter, } \mathbf{f H} \text { is not used. } \\ 1 & \text { highpass filter, } \mathbf{f H} \text { is not used. } \\ 2 & \text { bandpass filter } \\ 3 & \text { bandstop filter }\end{cases}
\]
\(\mathbf{a}[\mathbf{n a}]\) and \(\mathbf{b}[\mathbf{n b}]\) are the reverse and forward filter coefficients. The actual filtering
\[
y_{n}=\frac{1}{a_{0}}\left(\sum_{i=0}^{n b-1} b_{i} x_{n-i}-\sum_{i=1}^{n a-l} a_{i} y_{n-i}\right)
\]
is achieved by using the function IIRFiltering.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
type \\
order \\
fs \\
fL \\
fH \\
ripple \\
atten
\end{tabular} & \begin{tabular}{l}
integer \\
integer \\
double-precision \\
double-precision \\
double-precision \\
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
controls the filter type of the Elliptic IIR filter coefficients. \\
order of the IIR filter. \\
sampling frequency in Hz . \\
desired lower cutoff frequency of the filter in Hz . \\
desired higher cutoff frequency of the filter in Hz . \\
amplitude of the stop band ripple in decibels. \\
stop band attenuation, in decibels, of the IIR filter to be designed.
\end{tabular} \\
\hline & \begin{tabular}{l}
na \\
nb
\end{tabular} & \begin{tabular}{l}
integer \\
integer
\end{tabular} & \begin{tabular}{l}
number of coefficients in the a coefficient array. \\
number of coefficients in the \(\mathbf{b}\) coefficient array.
\end{tabular} \\
\hline Output & a & double-precision array double-precision array & \begin{tabular}{l}
array containing the reverse coefficients of the designed IIR filter. \\
array containing the forward coefficients of the designed IIR filter.
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{Elp_HPF}
```

int status = Elp_HPF (double \mathbf{x [ , int n, double fs, double fc,}
double ripple,double atten, int order, double y []);

```

\section*{Purpose}

Filters the input array using a digital highpass elliptic filter. The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & input data \\
& \(\mathbf{n}\) & integer & number of elements in \(\mathbf{x}\) \\
& \(\mathbf{f s}\) & double-precision & sampling frequency \\
& fc \\
ripple \\
atten \\
order & \begin{tabular}{l}
double-precision \\
double-precision \\
double-precision \\
integer
\end{tabular} & lutoff frequency \\
& pass band ripples in dB \\
stop band attenuation in dB \\
\hline Output & \(\mathbf{y}\) & double-precision array & filter order \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}
```

Example
/* Generate a random signal and filter it using a fifth order highpass
elliptic filter. */
double x[256], y[256], fs, fc, ripple, atten;
int n, order;
n = 256;
fs = 1000.0;
fc = 200.0;
ripple = 0.5;
atten = 40.0;
order = 5;
Uniform (n, 17, x);
Elp_HPF (x, n, fs, fc, ripple, atten, order, y);

```

\section*{Elp_LPF}
```

int status = Elp_LPF (double x [ ], int n, double fs, double fc, double ripple,
double atten, int order, double y []);

```

\section*{Purpose}

Filters the input array using a digital lowpass elliptic filter. The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & input data \\
& \(\mathbf{n}\) & integer & number of elements in \(\mathbf{x}\) \\
& \(\mathbf{f s}\) & double-precision & sampling frequency \\
& fc & double-precision & cutoff frequency \\
ripple \\
atten \\
order & double-precision \\
double-precision & integer & \begin{tabular}{l}
pass band ripples in dB \\
stop band attenuation in dB \\
\\
\end{tabular} & \(\mathbf{y}\) \\
\hline Output & double-precision array & filtered data \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate a random signal and filter it using a fifth order lowpass elliptic
filter. */
double $x[256], y[256], f s, f c$, ripple, atten;
int $n$, order;
$\mathrm{n}=256$;
$\mathrm{fs}=1000.0$;
$\mathrm{fc}=200.0$;
ripple $=0.5$;
atten $=40.0$;
order $=5$;
Uniform (n, 17, x);
Elp_LPF (x, $n, f s, f c, ~ r i p p l e, ~ a t t e n, ~ o r d e r, ~ y) ;$

```

\section*{Equi_Ripple}
```

int status = Equi_Ripple (int bands, double A [], double wts [ ], double fs,
double cutoffs [], int type, int n, double coef [],
double *delta);

```

\section*{Purpose}

Designs a multiband FIR linear phase filter, a differentiator, or a Hilbert Transform using the Parks-McClellan algorithm. The frequency response in each band has equal ripples that can be adjusted by a weighting factor. This function generates only the filter coefficients. No filtering of data is actually performed.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & bands & integer & number of bands of the filter \\
double-precision array & \begin{tabular}{l}
desired frequency response \\
magnitude of each band
\end{tabular} \\
& wts \\
fs \\
cutoffs \\
type \\
n
\end{tabular}\(\quad\)\begin{tabular}{l}
double-precision array \\
double-precision \\
double-precision array factor for each band \\
integer \\
integer
\end{tabular}\(\quad\)\begin{tabular}{l}
sampling frequency \\
end frequencies of each band \\
filter type \\
Oilter length
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{Parameter Discussion}

Generally, when type \(=1\) and bands \(\geq 2\), Equi_Ripple designs a multiband filter. When type \(=2\), bands \(=1\), and \(\mathbf{n}\) is even, Equi_Ripple designs a differentiator. When type \(=3\), bands \(=1\), and \(\mathbf{n}\) is even, Equi_Ripple designs a Hilbert Transform. For more information, please refer to Digital Filter Design by Parks and Burrus, or "A computer program for designing optimum FIR linear phase digital filters," by McClellan, et al, IEEE Transactions on Audio and Electroacoustics, vol. AU-21, no. 6, pp. 506-525, Nov. 1973.

\section*{Using This Function}

Although Equi_Ripple is the most flexible way to design an FIR linear phase filter, it has more complex parameters and requires some DSP knowledge. You may find it more convenient to use EquiRpl_LPF, EquiRpl_HPF, EquiRpl_BPF, and EquiRpl_BSF. These functions, which provide lowpass, highpass, bandpass and bandstop FIR filters with equal weighting factors in all bands, are special cases of Equi_Ripple with simplified parameters.

For more information about windowing, see the section About Windowing in Chapter 1, Advanced Analysis Library Overview.

\section*{Example 1}
```

/* Design a 24-point lowpass filter and filter the incoming signal. */
double x[256], coef[24], y[280], fs, delta;
double A[2]; /* array of frequency responses */
double wts[2]; /* array of weighting factors */
double cutoffs[4]; /* frequency points */

```
```

int n, m;
int bands; /* number of bands */
int type; /* filter type */
bands = 2; /* one pass band and one stop band */
fs = 1000.0; /* sampling frequency */
A[0] = 1.0; /* 1 for the pass band */
A[1] = 0.0; /* 0 for the stop band */
wts[0] = 1.0; /* weighting factor for the pass band */
wts[1] = 1.0; /* weighting factor for the stop band */
cutoffs[0] = 0.0;
cutoffs[1] = 300.0; /* the first stop band [0, 300.0] */
cutoffs[2] = 400.0;
cutoffs[3] = 500.0;
/* the pass band [400, 500] */
type = 1;
/* multiple band filter */
n = 24;
m = 256;
Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, \&delta);
Convolve (coef, n, x, m, y);/*convolve the filter with the signal */

```

\section*{Example 2}
/* Design a 31-point bandpass filter and filter the incoming signal. */ double \(x[256]\), coef[55], y[287], fs, delta;
```

double A[3]; /* array of frequency responses */

```
double wts[3]; /* array of weighting factors */
double cutoffs[6]; /* frequency points */
int \(n, m\);
int bands; /* number of bands */
int type; /* filter type */
bands = 3; \(/ *\) one pass band and two stop bands */
fs = 1000.0; /* sampling frequency */
\(\mathrm{A}[0]=0.0 ; \quad / *\) for the first stop band */
\(\mathrm{A}[1]=1.0 ; \quad / * 1\) for the stop band */
A[2] = 0.0; /* 0 for second stop band */
wts [0] = 10.0; /* weighting factor for the first stop band */
wts[1] = 1.0; /* weighting factor for the pass band */
wts[2] \(=4.0 ; \quad / *\) weighting factor for the second stop band */
cutoffs[0] = 0.0;
cutoffs[1] = 200.0; /* the first stop band [0, 200.0] */
cutoffs[2] \(=250.0 ; \quad / *\) the pass band \([250,350]\) */
cutoffs[3] \(=350.0 ; \quad 1\)
cutoffs \([4]=400.0 ;\)
cutoffs \([5]=500.0 ; \quad / *\) the second stop band \(* /\)
type \(=1 ; \quad / *\) multiple band filter */
n = 31; /* filter length */
\(\mathrm{m}=256\);
Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, \&delta);
Convolve (coef, \(n, x, m, y) ; / *\) convolve the filter with the signal */

\section*{Example 3}
```

/* Design a 30-point differentiator. */
double coef[30], fs, delta;
double A[1]; /* array of frequency responses */
double wts[1]; /* array of weighting factors */
double cutoffs[2]; /* frequency points */
int n;
int bands; /* number of bands */
int type; /* filter type */
bands = 1; /* one pass band and one stop band */
fs = 1000.0; /* sampling frequency */
A[0] = 1.0; /* 1 for the band */
wts[0] = 1.0; /* weighting factor for the band */
cutoffs[0] = 0.0;
cutoffs[1] = 500.0; /* the entire frequency range */
type = 2; /* differentiator */
n = 30; /* filter length */
Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, \&delta);

```

\section*{Example 4}
/* Design a 20-point Hilbert transform. */
double coef[20], fs, delta;
double A[1]; /* array of frequency responses */
double wts[1]; /* array of weighting factors */
double cutoffs[2]; /* frequency points */
int \(n\);
int bands; /* number of bands */
int type; /* filter type */
bands = 1; \(/ *\) one pass band and one stop band */
fs = 1000.0; /* sampling frequency */
\(\mathrm{A}[0]=1.0 ; \quad / * 1\) for the band */
wts[0] = 1.0; /* weighting factor for the band */
cutoffs[0] = 100.0;
cutoffs[1] = 500.0;
type = 3; /* Hilbert transform */
\(\mathrm{n}=20\); /* filter length */
Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, \&delta);

\section*{EquiRpl_BPF}
int status = EquiRpl_BPF (double fs, double f1, double f2, double f3, double f4, int \(\mathbf{n}\), double coef [], double *delta);

\section*{Purpose}

Designs a bandpass FIR linear phase filter using the Parks-McClellan algorithm. The function is a special case of the general Parks-McClellan algorithm. This function generates only the filter coefficients. No filtering of data is actually performed.

Parameters
\begin{tabular}{|l|l|l|l|}
\hline Input & fs & double-precision & sampling frequency \\
& f1 & double-precision & cutoff frequency 1 \\
& f2 & double-precision & cutoff frequency 2 \\
& f3 \\
& f4 & double-precision \\
double-precision \\
integer
\end{tabular}\(\quad\)\begin{tabular}{l}
cutoff frequency 3 frequency 4 \\
filter length
\end{tabular}

\section*{Parameter Discussion}

There are two stop bands and one pass band. The first stop band is \([0, \mathbf{f 1}]\) and the second stop band is \([\mathbf{f 4}, \mathbf{f s} / 2]\). The pass band is \([\mathbf{f} \mathbf{2}, \mathbf{f 3}]\). \(\mathbf{f 1}, \mathbf{f} \mathbf{2}, \mathbf{f 3}\), and \(\mathbf{f 4}\) must be in ascending order. Refer to the Equi_Ripple function description for more information.

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Design a 51-point bandpass filter and filter the incoming signal. */
double x[256], coef[25], y[301], fs, f1, f2, f3, f4, delta;
int n, m;
fs = 1000.0; /* sampling frequency */
f1 = 200.0; /* the first stop band [0, 200] */
f2 = 250.0;
f3 = 350.0; /* the pass band [250, 350] */
f4 = 400.0; /* the second stop band [400, 500] */
n 5 5; /* filter length */
m = 256;
EquiRpl_BPF (fs, f1, f2, f3, f4, n, coef, \&delta);
Convolve (coef, n, x, m, y);/*convolve the filter with the signal */

```

\section*{EquiRpl_BSF}
```

int status = EquiRpl_BSF (double fs, double f1,double f2, double f3,
double f4, int n, double coef [], double *delta);

```

\section*{Purpose}

Designs a bandstop FIR linear phase filter using the Parks-McClellan algorithm. The function is a special case of the general Parks-McClellan algorithm. This function generates only the filter coefficients. No filtering of data is actually performed.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
fs \\
f1 \\
f2 \\
f3 \\
f4 \\
n
\end{tabular} & double-precision double-precision double-precision double-precision double-precision integer & sampling frequency cutoff frequency 1 cutoff frequency 2 cutoff frequency 3 cutoff frequency 4 filter length \\
\hline Output & \begin{tabular}{l}
coef \\
delta
\end{tabular} & double-precision array double-precision & filter coefficients normalized ripple size \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

There are two pass bands and one stop band. The first pass band is \([0, \mathbf{f 1}]\) and the second pass band is \([\mathbf{f 4}, \mathbf{f} \mathbf{s} / 2]\). The stop band is \([\mathbf{f} \mathbf{2}, \mathbf{f 3}]\). \(\mathbf{f 1}, \mathbf{f} \mathbf{2}, \mathbf{f 3}\), and \(\mathbf{f} 4\) must be in ascending order. Refer to the Equi_Ripple function description for more information.

\section*{Example}
```

/* Design a 51-point bandstop filter and filter the incoming signal. */
double x[256], coef[25], y[301], fs, f1, f2, f3, f4, delta;
int n, m;
fs = 1000.0; /* sampling frequency */
f1 = 200.0; /* the first pass band [0, 200] */
f2 = 250.0;
f3 = 350.0; /* the stop band [250, 350] */
f4 = 400.0; /* the second pass band [400, 500] */
n = 51; /* filter length */
m = 256;
EquiRpl_BSF (fs, f1, f2, f3, f4, n, coef, \&delta);
Convolve (coef, n, x, m, y); /* convolve the filter with the signal */

```

\section*{EquiRpl_HPF}
```

int status = EquiRpl_HPF (double fs, double f1, double f2, int n, double coef [ ],
double *delta);

```

\section*{Purpose}

Designs a highpass FIR linear phase filter using the Parks-McClellan algorithm. The function is a special case of the general Parks-McClellan algorithm. This function generates only the filter coefficients. No filtering of data is actually performed.

Parameters
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{f s}\) & double-precision & sampling frequency \\
& \(\mathbf{f 1}\) & double-precision \\
double-precision \\
f2 & cutoff frequency 1 \\
integer
\end{tabular}\(\quad\)\begin{tabular}{l}
cutoff frequency 2 \\
filter length
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

There is one stop band and one pass band. The stop band is [0, \(\mathbf{f 1}]\) and the pass band is [\(\mathbf{f} \mathbf{2}, \mathbf{f s} / 2]\). Refer to the Equi_Ripple function description for more information.

\section*{Example}
```

/* Design a 25-point highpass filter and filter the incoming signal. */
double x[256], coef[25], y[281], fs, f1, f2, delta;
int n, m;
fs = 1000.0; /* sampling frequency */
f1 = 300.0; /* the stop band [0, 300] */
f2 = 400.0; /* the pass band [400, 500] */
n = 25;
/* filter length */
m = 256;
EquiRpl_HPF (fs, f1, f2, n, coef, \&delta);
Convolve (coef, n, x, m, y); /* convolve the filter with the signal */

```

\section*{EquiRpl_LPF}
```

int status = EquiRpl_LPF (double fs, double f1, double f2, int n, double coef [ ],
double *delta);

```

\section*{Purpose}

Designs a lowpass FIR linear phase filter using the Parks-McClellan algorithm. The function is a special case of the general Parks-McClellan algorithm. This function generates only the filter coefficients. No filtering of data is actually performed.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & fs & double-precision & sampling frequency \\
& f1 & double-precision \\
double-precision & cutoff frequency 1 \\
& f2 & integer & \begin{tabular}{l}
cutoff frequency 2 \\
filter length
\end{tabular} \\
\hline Output & \begin{tabular}{l}
coef \\
delta
\end{tabular} & \begin{tabular}{l}
double-precision array \\
double-precision
\end{tabular} & filter coefficients \\
normalized ripple size
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

There is one pass band and one stop band. The pass band is [0, \(\mathbf{f 1}]\) and the stop band is [\(\mathbf{f 2}, \mathbf{f s} / 2]\). Refer to the Equi_Ripple function description for more information.

\section*{Example}
```

/* Design a 25-point lowpass filter and filter the incoming signal. */
double x[256], coef[25], y[281], fs, f1, f2, delta;
int n, m;
fs = 1000.0; /* sampling frequency */
f1 = 300.0; /* the pass band [0, 300] */
f2 = 400.0; /* the stop band [400, 500] */
n = 25; /* filter length */
m = 256;
EquiRpl_LPF (fs, f1, f2, n, coef, \&delta);
Convolve (coef, n, x, m, y);/* convolve the filter with the signal*/

```

\section*{ExBkmanWin}
int status = ExBkmanWin (double \(\mathbf{x}[\)], int \(\mathbf{n}\));

\section*{Purpose}

Applies an exact Blackman window to the input sequence X. If Y represents the output sequence, the elements of Y are obtained using the following equation.
\[
Y_{i}=X_{i}\left(a_{0}-a_{1} * \cos (2 \pi i / n)+a_{2}{ }^{*} \cos (4 \pi i / n)\right), i=0, \ldots, n-1
\]
where
\[
\begin{aligned}
& a_{o}=7938.0 / 18608.0 \\
& a_{1}=9240.0 / 18608.0 \\
& a_{2}=1430.0 / 18608.0
\end{aligned}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
contains the input signal. \\
number of elements in the input array.
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision array & \begin{tabular}{l}
contains the signal after applying the \\
exact Blackman window.
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{ExpFit}
```

int status = ExpFit (double x[], double y [], int n, double z[], double *a,
double *b, double *mse);

```

\section*{Purpose}

Finds the coefficient values that best represent the exponential fit of the data points (\(\mathbf{x}, \mathbf{y}\)) using the least squares method. The \(\mathrm{i}^{\text {th }}\) element of the output array is obtained by using the following formula..
\[
z_{i}=a * e^{b * x_{i}}
\]

The mean squared error (mse) is obtained using the following formula.
\[
m s e=\sum_{i=0}^{n-1}\left|z_{i}-y_{i}\right|^{2} / n
\]
where \(\mathbf{n}\) is the number of sample points.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
\(\mathbf{x}\) values \\
\(\mathbf{y}\) values \\
number of sample points
\end{tabular} \\
\hline Output & \(\mathbf{n}\) & \begin{tabular}{l}
double-precision array \\
double-precision \\
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
best exponential fit \\
amplitude \\
exponential constant \\
mean squared error
\end{tabular} \\
\hline
\end{tabular}

Note: The y values must be all positive or all negative to perform an exponential fit.

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate an exponential pattern and find the best exponential fit. */
double x[200], y[200], z[200];
double first, last, a, b, amp, decay, mse;
int n;
n = 200;
first = 0.0;
last = 1.99E2;
Ramp (n, first, last, x); /* x[i] = i */
a = 3.5;
b = -2.75;
for (i=0; i<n; i++)
y[i] = a * exp(b*x[i]);
/* Find the best exponential fit in z.*/
ExpFit (x, y, n, z, \&amp, \&decay, \&mse);

```

\section*{ExpWin}
int status = ExpWin (double \(\mathbf{x}[\)], int \(\mathbf{n}\), double final);

\section*{Purpose}

Applies an exponential window to the input sequence X . If Y represents the output sequence, the elements of Y are obtained with the following formula.:
\[
Y_{i}=X_{i} e^{a i}
\]
where
\(\mathrm{a}=\ln (\mathrm{f}) /(\mathrm{n}-1)\)
f is the final value
n is the number of elements in X .

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer \\
final \\
double-precision
\end{tabular} & \begin{tabular}{l}
on input, \(\mathbf{x}[n]\) contains the input signal. \\
number of elements in the input array. \\
final value of the exponential window \\
function.
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision array & \begin{tabular}{l}
on output, \(\mathbf{x}[\mathrm{n}]\) contains the signal after \\
applying the exponential window.
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{F_Dist}
int status = F_Dist (double \(\mathbf{f}\), int \(\mathbf{n}\), int \(\mathbf{m}\), double *p);

\section*{Purpose}

Calculates the one-sided probability \(\mathbf{p}\) :
\[
p=\operatorname{prob}(F \leq f)
\]
where F is a random variable from the F -distribution with \(\mathbf{n}\) and \(\mathbf{m}\) degrees of freedom.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{f}\) & \begin{tabular}{l}
double-precision \\
integer \\
integer
\end{tabular} & \begin{tabular}{l}
\(-\infty<\mathbf{f}<\infty\) \\
degrees of freedom \\
degrees of freedom
\end{tabular} \\
\hline Output & \(\mathbf{p}\) & double-precision & probability \((0 \leq \mathrm{p}<1)\) \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

double x, p;
int n, m;
x = -123.456;
n = 6;
m = 7;
F_Dist (x, n, m, \&p);
/* Now p = 0 because F distributed variables are non-negative. */

```

\section*{FFT}
int status = FFT (double \(\mathbf{x}[]\), double \(\mathbf{y}[]\), int \(\mathbf{n})\);

\section*{Purpose}

Computes the Fast Fourier Transform of the complex data. Let \(\mathrm{X}=\mathrm{x}+\mathrm{jy}\) be the complex array, then:
\[
Y=F F T\{X\}
\]

The operation is done in place and the input arrays \(\mathbf{x}\) and \(\mathbf{y}\) are overwritten. See the About the Fast Fourier Transform (FFT) section in Chapter 1.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
double-precision array
\end{tabular} & \begin{tabular}{l}
real part of complex array \\
imaginary part of complex \\
array \\
number of elements
\end{tabular} \\
\hline Output & \(\mathbf{n}\) & integer & \begin{tabular}{l}
double-precision array \\
double-precision array
\end{tabular} \\
\(\mathbf{y}\) & \begin{tabular}{l}
real part of FFT \\
imaginary part of FFT
\end{tabular} \\
\hline
\end{tabular}

Note: The number of elements (n) must be a power of two.

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate two arrays with random numbers and compute its
Fast Fourier Transform. */
double x[256], y[256];
int n;
n = 256;
Uniform (n, 17, x);
Uniform (n, 17, y);
FFT (x, y, n);

```

\section*{FHT}
```

int status = FHT (double x[], int n);

```

\section*{Purpose}

Computes the Fast Hartley Transform using the following formula.
\[
X_{k}=\sum_{i=0}^{n-1} x_{i} \operatorname{cas}(2 \pi i k / n)
\]
where \(\mathrm{X}_{\mathrm{k}}\) is the \(\mathrm{k}^{\text {th }}\) point of the FHT, and cas \((\mathrm{k})=\cos (\mathrm{k})+\sin (\mathrm{k})\).
The operation is done in place and the \(\mathbf{x}\) input array is overwritten.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
array to be transformed \\
number of elements
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision array & Hartley Transform \\
\hline
\end{tabular}

Note: The number of elements (n) must be a power of two.

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
/* Generate an array with random numbers and compute its */
/* Fast Hartley Transform. */
double x[256];
int \(n\); \(\mathrm{n}=256\); Uniform (\(n, 17, x\)); FHT (x, n) ;

\section*{FIR_Coef}
```

int status = FIR_Coef (int type, double fs, double fL, double fH, int taps,
double coef []);

```

\section*{Purpose}

Generates a set of FIR filter coefficients based on the window design method. This function returns the coefficients as the truncated impulse response of an ideal frequency response of the selected filter type. The type parameter has the following valid values.
\[
\text { type }= \begin{cases}0 & \text { lowpass filter, } \mathbf{f H} \text { is not used. } \\ 1 & \text { highpass filter, } \mathbf{f H} \text { is not used. } \\ 2 & \text { bandpass filter } \\ 3 & \text { bandstop filter }\end{cases}
\]

The actual filtering
\[
\mathrm{y}_{n}=\sum_{\mathrm{i}=0}^{\text {taps }-1} \operatorname{Coef}_{\mathrm{i}} \bullet \mathrm{x}_{n-1}
\]
is achieved by using the convolution function Convolve.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & type & integer & \begin{tabular}{l}
controls the filter type of the FIR filter \\
coefficients to be designed. \\
sampling frequency in hertz.
\end{tabular} \\
& \begin{tabular}{ll}
\(\mathbf{f s}\) \\
\(\mathbf{f L}\) \\
taps
\end{tabular} & \begin{tabular}{l}
double-precision \\
double-precision \\
double-precision \\
integer
\end{tabular} & \begin{tabular}{l}
desired lower cutoff frequency in hertz. \\
desired upper cutoff frequency in hertz. \\
desired length of the FIR filter.
\end{tabular} \\
\hline Output & coef & double-precision array & \begin{tabular}{l}
computed output window FIR filter \\
coefficients.
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{FlatTopWin}
```

int status = FlatTopWin(double x [ ], int n);

```

\section*{Purpose}

Applies a flat top window to the input sequence \(x\). If \(y\) represents the output sequence, the elements of y are obtained using the following equation.
\[
\mathrm{y}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}(0.2810639-0.5208972 \cos (2 \pi \mathrm{i} / \mathrm{n})+0.1980399 \cos (4 \pi \mathrm{i} / \mathrm{n}))
\]
where \(\mathbf{n}\) is the number of elements in x .

\section*{Parameters}
\(\left.\)\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular}\(\quad\)\begin{tabular}{l}
double-precision array \\
integer
\end{tabular}\(\quad\)\begin{tabular}{l}
on input, \(\mathbf{x}[\mathrm{n}]\) contains the input signal. \\
number of elements in the input array.
\end{tabular} \right\rvert\, \begin{tabular}{l}
Output
\end{tabular} \(\mathbf{x}\) double-precision array \(\quad\)\begin{tabular}{l}
on output, \(\mathbf{x}[\mathrm{n}]\) contains the signal after \\
applying the flat top window.
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{ForceWin}
```

int status = ForceWin (double x [ ], int n, double duty);

```

\section*{Purpose}

Applies a force window to the input sequence x :
\[
x_{i}= \begin{cases}x_{i} & 0 \leq i \leq \operatorname{int}[(d u t y / 100) * n] \\ 0 & \text { elsewhere }\end{cases}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer \\
duty \\
double-precision
\end{tabular} & \begin{tabular}{l}
on input, \(\mathbf{x}[\mathrm{n}]\) contains the input signal. \\
number of elements in the input array. \\
duty cycle, in percent, of the force \\
window.
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision array & \begin{tabular}{l}
on output, \(\mathbf{x}[\mathrm{n}]\) contains the signal after \\
applying the force window.
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{ForwSub}
int status \(=\) ForwSub \((\operatorname{void} * \mathbf{a}\), double \(\mathbf{y}[\)], int \(\mathbf{n}\), double \(\mathbf{x}[\)], int \(\mathbf{p}[])\);

\section*{Purpose}

Solves the linear equations \(\mathrm{a}^{*} \mathrm{x}=\mathrm{y}\) by forward substitution. \(\mathbf{a}\) is assumed to be an \(\mathbf{n}\) by \(\mathbf{n}\) lower triangular matrix whose diagonal elements are all ones. \(\mathbf{x}\) is obtained by the following formulas.
\[
\begin{aligned}
& x_{o}=y_{0} \\
& x_{i}=y_{i} \sum_{j=0}^{i-1} a_{i, j} * x_{j} \quad \text { for } i=1,2, \ldots n-1
\end{aligned}
\]

The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{a}\) & double-precision 2D array & input matrix \\
& \(\mathbf{y}\) & double-precision array & input vector \\
integer & dimension size of a \\
integer array & permutation vector \\
\hline Output & \(\mathbf{x}\) & double-precision array & solution vector \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Using This Function}

ForwSub is used in conjunction with LU and BackSub to solve linear equations. The parameter \(\mathbf{p}\) is obtained from LU. If you are not using the \(L U\) function, set \(\mathbf{p}[\mathbf{i}]=\mathbf{i}\).

Refer to the LU function description for more information.

\section*{Example}
```

/* To solve a linear equation A*x = y */
double A[10][10], x[10], y[10];
int p[10]; /* permutation vector */
int sign, n;
n = 10;
LU (A, n, p, \&sign); /* LU decomposition of A */
ForwSub (A, y, n, x, p); /* forward substitution */
BackSub (A, x, n, x); /* backward substitution */

```

\section*{FreeIIRFilterPtr}
int status = FreeIIRFilterPtr (IIRFilterPtr filterInformation);

\section*{Purpose}

Frees the IIR cascade filter structure and all internal arrays.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & filterInformation & IIRFilterPtr & \begin{tabular}{l}
filterInformation is the pointer to the filter \\
structure which contains the filter \\
coefficients and the internal filter \\
information.
\end{tabular} \\
Please refer to the function \\
AllocIIRFilterPtr for further \\
information about the filter structure.
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
Refer to error codes in \\
Appendix A.
\end{tabular} \\
\hline
\end{tabular}

\section*{GaussNoise}
int status = GaussNoise (int n, double sDev, int seed, double noise []);

\section*{Purpose}

Generates an array of random Gaussian numbers distributed with expected zero mean value, and specified standard deviation.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{n}\) \\
sDev \\
seed
\end{tabular} & \begin{tabular}{l}
integer \\
double-precision \\
integer
\end{tabular} & \begin{tabular}{l}
number of samples \\
desired standard deviation \\
initial seed value
\end{tabular} \\
\hline Output & noise & double-precision array & Gaussian noise pattern \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Using This Function}

The expected standard deviation of the returned pattern is the one specified by the user. The expected mean value is zero; that is, the noise array values are expected to be centered about
zero. When seed \(\geq 0\), a new random sequence is generated using the seed value. When seed \(<0\), the previously generated random sequence continues.
```

Example
/* The following code generates an array of random Gaussian distributed
numbers. */
double x[20], sDev;
int n;
n = 20;
sDev = 5.0;
GaussNoise (n, sDev, 17, x);

```

\section*{GenCosWin}
int status \(=\mathbf{G e n C o s W i n}(\) double \(\mathbf{x}[\)], int \(\mathbf{n}\), double \(\mathbf{a}[\), int na);

\section*{Purpose}

Applies a general cosine window to the input sequence \(x\). If y represents the output sequence, the elements of y are obtained using the following formula.
\[
y_{i}=x_{i} \sum_{k=0}^{n a-1}(-1)^{k} a_{k} \cos (2 \pi k i / n)
\]
where
\(\mathbf{a}\) is the array of coefficients
na is the number of coefficients
\(\mathbf{n}\) is the number of elements in \(\mathbf{x}\)

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer \\
a \\
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
on input, \(\mathbf{x}[\mathrm{n}]\) contains the input signal. \\
number of elements in the input array. \\
general cosine coefficient array. \\
number of elements in the \(\mathbf{a}\).
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision array & \begin{tabular}{l}
on output, \(\mathbf{x}[\mathrm{n}]\) contains the signal after \\
applying the general Cosine Window.
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{GenLSFit}
int status \(=\) GenLSFit (void \(* \mathbf{H}\), int \(\mathbf{n}\), int \(\mathbf{k}\), double \(\mathbf{y}[\)], double stdDev [], int algorithm, double z [], double b[], double covar [], double *mse);

\section*{Purpose}

Finds the Best Fit k-dimensional plane and the set of linear coefficients using the least chisquares method for observation data sets,
\[
\left\{x_{i 0}, x_{i 1}, \ldots, x_{i k-1}, x_{i}\right\}
\]
where \(i=0,1, \ldots, \mathrm{n}-1\), and
\(n=\) the number of your observation data sets.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
n \\
k \\
y \\
stdDev \\
algorithm
\end{tabular} & \begin{tabular}{l}
2D doubleprecision array integer integer \\
1D doubleprecision array 1D doubleprecision array \\
integer
\end{tabular} & \begin{tabular}{l}
An n-by-k matrix, which contains the observation data \(\left\{x_{i 0}, x_{i 1}, \ldots, x_{i k-1}\right\} \mathrm{i}=0,1, \ldots, n-1\), where n is the number of rows in \(\mathbf{H}, k\) is the number of columns in \(\mathbf{H}\). \\
Number of rows of \(\mathbf{H}\) as well as the number of elements in \(\mathbf{y}\). \\
Number of columns of \(\mathbf{H}\) as well as the number of elements in \(\mathbf{b}\). \\
Number of elements in \(y\) should be equal to the number of rows in \(\mathbf{H}\). \\
Standard deviation \(\sigma_{\mathrm{i}}\) for data point \(\left(x_{i}, y_{i}\right)\). If they are equal or if you do not know, pass an empty array, and the function will ignore this parameter. The size of this array should be equal to \(n\). \\
Algorithm to be used in solving the multiple linear regression model. The algorithm has six selections: \\
0: SVD \\
1: Givens \\
2: Givens2 \\
3: Householder \\
4: LU decomposition \\
5: Cholesky algorithm
\end{tabular} \\
\hline
\end{tabular}
(continues)

\section*{Parameters (Continued)}
\begin{tabular}{|l|l|l|l|}
\hline Output & \(\mathbf{z}\) & \begin{tabular}{l}
1D double- \\
precision \\
array
\end{tabular} & Fitted data computed by using the coefficients \(\mathbf{b}\). \\
b & covar & \begin{tabular}{l}
1D double- \\
precision \\
array \\
2D double- \\
precision \\
array
\end{tabular} & \begin{tabular}{l}
Set of coefficients that minimize \(\chi^{2}\), which is \\
defined in equation (2-2).
\end{tabular} \\
mse & \begin{tabular}{l}
Matrix of covariances C with \(k\)-by- \(k\) elements. \(c_{i k}\) \\
is the covariance between \(b_{i}\) and \(b_{k}\) and \(c_{i i}\) is the \\
variance of \(b_{i}\). If you pass an empty array for \\
covar, the function will not compute this matrix. \\
double- \\
precision
\end{tabular} & Mean squared error.
\end{tabular}

\section*{Using This Function}

You can use GenLSFit to solve multiple linear regression problems. You can also use it to solve for the linear coefficients in a multiple-function equation.

The general least squares linear fit problem can be described as follows. Given a set of observation data, find a set of coefficients that fit the linear "model."
\[
\begin{align*}
& y_{i}=b_{0} x_{i 0}+\ldots+b_{k-1} x_{i k-1} \\
& =\sum_{j=0}^{k-1} b_{j} x_{i j} \quad \mathrm{i}=0,1, \ldots, \mathrm{n}-1 \tag{2-1}
\end{align*}
\]
where \(\mathbf{b}\) is the set of coefficients,
\(\mathbf{n}\) is the number of elements in \(\mathbf{y}\) and the number of rows of \(\mathbf{H}\), and
\(\mathbf{k}\) is the number of elements in \(\mathbf{b}\).
\(x_{i j}\) is your observation data, which is contained in \(\mathbf{H}\).
\[
H=\left[\begin{array}{cccc}
x_{00} & x_{01} & \ldots & x_{0 k-1} \\
x_{10} & x_{11} & & x_{1 k-1} \\
: & & & \\
x_{n-10} & x_{n-12} & \ldots & x_{n-1 k-1}
\end{array}\right]
\]

Equation (2-1) can also be written as \(\mathrm{Y}=\mathrm{HB}\).
This is a multiple linear regression model, which uses several variables
\[
x_{i 0}, x_{i 1}, \ldots, x_{i k-1},
\]
to predict one variable \(y_{i}\). In contrast, the LinFit, ExpFit, and PolyFit functions are all based on a single predictor variable, which uses one variable to predict another variable.
In most cases, we have more observation data than coefficients. The equations in (2-1) may not produce the solution. The fit problem becomes to find the coefficients \(B\) that minimizes the difference between the observed data, \(\mathrm{y}_{\mathrm{i}}\) and the predicted value,
\[
z_{i}=\sum_{j=0}^{k-1} b_{j} x_{i j}
\]

This function uses the least chi-squares plane method to obtain the coefficients in (2-1), that is, finding the solution, B , which minimizes the following quantity.
\[
\begin{equation*}
\chi^{2}=\sum_{i=0}^{n-1}\left(\frac{y_{i}-z_{i}}{\sigma_{i}}\right)^{2}=\sum_{i=0}^{n-1}\left(\frac{y_{i}-\sum_{i=0}^{k-1} b_{j} x_{i j}}{\sigma_{i}}\right)^{2}=\left|H_{0} B-Y_{0}\right|^{2} \tag{2-2}
\end{equation*}
\]
where \(h_{0 i j}=\frac{x_{i j}}{\sigma_{i}}, y_{0 i}=\frac{y_{i}}{\sigma_{i}}, i=0,1, \ldots, n-1 ; j=0,1, \ldots, k-1\).

In equation (2-2), \(\sigma_{\mathrm{i}}\) is the standard deviation, \(\mathbf{S t d D e v}\). If the measurement errors are independent and normally distributed with constant standard deviation \(\sigma_{i}=\sigma\), the preceding equation is also the least squares estimation.

There are different ways to minimize \(\chi^{2}\). One way to minimize \(\chi^{2}\) is to set the partial derivatives of \(\chi^{2}\) to zero with respect to \(b_{0}, b_{1}, \ldots, b_{k-1}\).
\[
\left(\begin{array}{c}
\frac{\partial \chi^{2}}{\partial b_{0}}=0 \\
\frac{\partial \chi^{2}}{\partial b_{1}}=0 \\
\cdot \\
\cdot \\
\frac{\partial \chi^{2}}{\partial b_{k-1}}=0
\end{array}\right.
\]

The preceding equations can be derived to
\[
\begin{equation*}
H_{0}^{T} H_{0} B=H_{0}^{T} Y . \tag{2-3}
\end{equation*}
\]
\(H_{0}^{T}\) is the transposition of \(H_{0}\).
Equation (2-3) and the one preceding it are also called normal equations of the least squares problems. You can solve them using LU or Cholesky factorization algorithms, but the solution from the normal equations is susceptible to round-off error.

An alternative, and preferred way to minimize \(\chi^{2}\) is to find the least squares solution of equations
\[
H_{0} B=Y_{0 .}
\]

You can use QR or SVD factorization to find the solution, B. For QR factorization, you can choose Householder, Givens, and Givens2 (also called fast Givens).

Different algorithms can give you different precision, and in some cases, if one algorithm cannot solve the equation, perhaps another algorithm can. You can try different algorithms to find the one best suited to your data.

The covariance matrix covar is computed as follows.
\[
\operatorname{covar}=\left(H_{0}^{T} H_{0}\right)^{-1}
\]

The best fitted curve \(\mathbf{z}\) is given by the following formula.
\[
z_{i}=\sum_{j=0}^{k-1} b_{j} x_{i j}
\]

The mse is obtained using the following formula.
\[
m s e=\frac{1}{n} \sum_{i=0}^{n-1}\left(\frac{y_{i}-z_{i}}{\sigma_{i}}\right)^{2}
\]

The polynomial fit that has a single predictor variable can be thought of as a special case of multiple regression. If the observation data sets are \(\left\{x_{i}, y_{i}\right\}\) where \(i=0,1, \ldots, n-1\), the model for polynomial fit is as follows.
\[
\begin{equation*}
y_{i}=\sum_{j=0}^{k-i} b_{j} x_{i}^{j}=b_{0}+b_{1} x_{i}+b_{2} x_{i}^{2}+\ldots+b_{k-1} x_{i}^{k-1} \tag{2-4}
\end{equation*}
\]
where \(i=0,1,2, \ldots, n-1\).
Comparing equations (2-1) and (2-4) shows that \(x_{i j}=x_{i}^{j}\). In other words,
\[
x_{i 0}=x_{i}^{0}, x_{i 1}=x_{i}, x_{i 2}=x_{i}^{2}, \ldots x_{i k-1}=x_{i}^{k-1}
\]

In this case, you can build H as follows:
\[
H=\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{k-1} \\
1 & x_{1} & x_{1}^{2} & & x_{1}^{k-1} \\
\vdots & & & & \\
1 & x_{n-1} & x_{n-1}^{2} & & x_{n-1}^{k-1}
\end{array}\right]
\]

Instead of using \(x_{i j}=x_{j}^{i}\), you can also choose another function formula to fit the data sets \(\left\{x_{i}, y_{i}\right\}\). In general, you can select \(x_{i j}=f_{j}\left(x_{i}\right)\). Here, \(f_{j}\left(x_{i}\right)\) is the function model that you choose to fit your observation data. In polynomial fit, \(\mathrm{f}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{i}}\right)=x_{i}^{j}\).
In general, you can build \(H\) as follows:
\[
H=\left[\begin{array}{ccccc}
f_{0}\left(x_{0}\right) & f_{1}\left(x_{0}\right) & f_{2}\left(x_{0}\right) & \cdots & f_{k-1}\left(x_{0}\right) \\
f_{0}\left(x_{1}\right) & f_{1}\left(x_{1}\right) & f_{2}\left(x_{1}\right) & \cdots & f_{k-1}\left(x_{1}\right) \\
\vdots & & & & \\
f_{0}\left(x_{n-1}\right) & f_{1}\left(x_{n-1}\right) & f_{2}\left(x_{n-1}\right) & \cdots & f_{k-1}\left(x_{n-1}\right)
\end{array}\right]
\]

Your fit model is:
\[
y_{i}=b_{0} f_{0}(x)+b_{1} f_{1}(x)+\ldots+b_{k-1} f_{k-1}(x)
\]

The following two examples show how to use this function. The first example uses the GenLSF it function to perform multiple regression analysis based entirely on tabulated observation data. The second solves for the linear coefficients in a multiple-function equation.

\section*{Example: Predicting Cost}

Suppose you want to estimate the total cost (in dollars) of a production of baked scones; using the quantity produced, X 1 , and the price of one pound of flour, X 2 . To keep things simple, the following five data points form this sample data table.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Cost (dollars) \\
\(\mathbf{Y}\)
\end{tabular} & \begin{tabular}{l}
Quantity \\
X1
\end{tabular} & \begin{tabular}{l}
Flour Price \\
X2
\end{tabular} \\
\hline\(\$ 150\) & 295 & \(\$ 3.00\) \\
\(\$ 75\) & 100 & \(\$ 3.20\) \\
\(\$ 120\) & 200 & \(\$ 3.10\) \\
\(\$ 300\) & 700 & \(\$ 2.80\) \\
\(\$ 50\) & 60 & \(\$ 2.50\) \\
\hline
\end{tabular}

You want to estimate the coefficients to the following equation.
\[
Y=b_{0}+b_{1} \mathrm{X} 1+b_{2} \mathrm{X} 2
\]

The only parameters that you need to build are \(\mathbf{H}\) (observation matrix) and y arrays. Each column of \(\mathbf{H}\) is the observed data for each independent variable: the first column is one because the coefficient \(b_{0}\) is not associated with any independent variable.
H should be filled in as:
\[
H=\left[\begin{array}{ccc}
1 & 295 & 3 \\
1 & 100 & 3.20 \\
1 & 200 & 3.10 \\
1 & 700 & 280 \\
1 & 60 & 250
\end{array}\right]
\]

The following code is based on this example.
```

/*The example of predicting cost using GenLSFit */
int k, n, algorithm, status;
double H[5][3], y[5], z[5], b[3], X1[5],X2[5], mse;
double *stdDev=0, *covar=0; /* define empty arrays, the function will ignore
these parameters. */
n = 5;
k = 3;
/* Read in data for X1,X2 and y */
•
•
/* Construct matrix H */
for(i=0;i<n;i++) {
H[i][0] = 1; /* fill in the first column of H. */
H[i][1] = X1[i]; /* fill in the second column of H. */
H[i][2] = X2[i]; /* fill in the third column of H. */
}
algorithm = 0; /* use SVD algorithm */
status = GenLSFit(H,n,k,y,stdDev,algorithm,z,b,covar,\&mse);

```

\section*{Example: Linear Combinations}

Suppose that you have collected samples from a transducer (Y Values) and you want to solve for the coefficients of the model.
\[
y=b_{0}+b_{1} \sin (\omega x)+b_{2} \cos (\omega x)+b_{3} x^{3}
\]

To build \(H\), you set each column to the independent functions evaluated at each x value. Assuming there are 100 x values, \(H\) would be the following array.
\[
H=\left[\begin{array}{cccc}
1 & \sin \left(\omega x_{0}\right) & \cos \left(\omega x_{0}\right) & x_{0} \\
1 & \sin \left(\omega x_{1}\right) & \cos \left(\omega x_{1}\right) & x_{1}^{2} \\
1 & \sin \left(\omega x_{2}\right) & \cos \left(\omega x_{2}\right) & x_{2}^{2} \\
\vdots & \vdots & \vdots & \vdots \\
1 & \sin \left(\omega x_{99}\right) & \cos \left(\omega x_{99}\right) & x_{99}^{2}
\end{array}\right]
\]

The following code is based on this example.
```

/*The example of linear combinations using GenLSFit */
int i, k, n, algorithm, status;
double H[100][4], y[100], z[100], b[4],x[100],mse, w;
double *stdDev=0, *covar=0; /* define empty arrays, the function will ignore
these parameters. */
n = 100;
k = 4;
w = 0.2;
/* Read in data for x and y */
•
•
/* Construct matrix H */
for(i=0;i<n;i++) {
H[i][0] = 1; /* fill in the first column of H. */
H[i][1] = sin(w*x[i]); /* fill in the second column of H. */
H[i][2] = cos(w*x[i]); /* fill in the third column of H. */
H[i][3] = pow(x[i],3); /* fill in the fourth column of H. */
}
algorithm = 0; /* use SVD algorithm */
status = GenLSFit(H,n,k,y,stdDev,algorithm,z,b,covar, \&mse);

```

\section*{GenLSFitCoef}
```

int status = GenLSFitCoef (void *H, int n, int k, double y [ ], double b [ ],
int algorithm);

```

\section*{Purpose}

Finds the k-dimension linear curve values and the set of k-dimension linear fit coefficients, which describe the k-dimension linear curve that best represents the input data set using the leastsquares solution. The general form of the k-dimension linear fit is as follows.

Let \(\mathrm{i}=0,1, \ldots\), n be your \(\mathrm{i}^{\text {th }}\) observation and \(\mathrm{x}_{\mathrm{ij}}, \ldots, \mathrm{x}_{\mathrm{ik}-1}\) be \(\mathrm{k}-1\) observed x points and \(\mathrm{y}_{\mathrm{i}}\) be observed y point, the \(\mathbf{H}\) matrix is composed by
\[
\mathrm{H}_{\mathrm{nxk}}=\left[\begin{array}{cccc}
1 & \mathrm{x}_{01} & \mathrm{x}_{02} \cdots & \mathrm{x}_{0 \mathrm{k}-1} \\
1 & \mathrm{x}_{11} & \mathrm{x}_{12} \cdots & \mathrm{x}_{1 \mathrm{k}-1} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
1 & \mathrm{x}_{\mathrm{n}-1,1} & x_{\mathrm{n}-1,2} & \cdots \\
\mathrm{x}_{\mathrm{n}-1, \mathrm{k}-1}
\end{array}\right]
\]

The general LS linear fit coefficient \(\mathbf{b}_{\mathrm{k}}\) is obtained by minimizing the quantity
\[
Q=\sum_{i=0}^{n-1}\left(y_{i}-z_{i}\right)^{2}=\sum_{i=0}^{n-1}\left(y_{i}-b_{0}-\sum_{j=1}^{k-1} b_{j} x_{i j}\right)^{2}
\]

The algorithm has the following valid selection.
0 : using the singular value decomposition (defaults)
1: using the Givens decomposition
2: using the square root free Givens decomposition
3: using the Household transformation
4: using the LU decomposition
5: using the Cholesky decomposition

Each algorithm may offer different precision depending on the input data. Given the coefficient vector \(\mathbf{b}[k]\) and \(\mathbf{H}\), the fitted data \(\mathrm{z}_{\mathrm{i}}\) can be computed by a simple matrix multiplication
\[
Z=\boldsymbol{H} \cdot \boldsymbol{b}
\]
and the mean squared error can be computed by
\[
m s e=\frac{1}{n} \sum_{i=0}^{n-1}\left(z_{i}-y_{i}\right)^{2}
\]

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
H \\
n \\
k \\
y \\
algorithm
\end{tabular} & \begin{tabular}{l}
double-precision 2D array \\
integer \\
integer \\
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input matrix which represents the formula you use to fit the data set \(\{\mathrm{X}, \mathrm{Y}\} . \mathbf{H}[\mathrm{i}][\mathrm{j}]\) are the function values of \(\mathrm{X}[\mathrm{i}]\). \\
number of rows used in \(\mathbf{H}\), as well as the number of elements in \(\mathbf{y}\). \\
number of columns used in \(\mathbf{H}\), as well as the number of elements in \(\mathbf{b}\). \\
array containing the \(y\) coordinates of the (\(\mathrm{x}, \mathrm{y}\)) data sets to be fitted. \\
algorithm to be used in solving the multiple linear regression model.
\end{tabular} \\
\hline Output & b & double-precision array & contains the set of linear coefficients that best fit the multiple linear regression model in a least squares sense. The size of this array must be at least \(\mathbf{k}\). \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{GetAnalysisErrorString}
```

char *message = GetAnalysisErrorString (int errorNum)

```

\section*{Purpose}

Converts the error number returned by an Analysis Library function into a meaningful error message.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & errorNum & integer & \begin{tabular}{l}
status returned by Analysis \\
function.
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline message & string & explanation of Error \\
\hline
\end{tabular}

\section*{HamWin}
int status = HamWin (double \(\mathbf{x}[\)] , int \(\mathbf{n}\));

\section*{Purpose}

Applies a Hamming window to the \(\mathbf{x}\) input signal. The Hamming window is defined by the formula.
\[
w_{i}=0.54-0.46 * \cos (2 \pi i / n) \quad \text { for } i=0,1, \ldots, n-1
\]

The output signal is obtained by the following formula.
\[
x_{i}=x_{i} * w_{i} \quad \text { for } i=0,1, \ldots, n-1
\]

The window operation is performed in place. The windowed data \(\mathbf{x}\) replaces the input data \(\mathbf{x}\).

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input data \\
number of elements in \(\mathbf{x}\)
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision array & windowed data \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{HanWin}
```

int status = HanWin (double x [ ] , int n);

```

\section*{Purpose}

Applies a Hanning window to the \(\mathbf{x}\) input signal. The Hanning window is defined by the following formula.
\[
w_{i}=0.5-0.5 * \cos (2 \pi i / n) \text { for } i=0,1, \ldots, n-1
\]

The output signal is obtained by the following formula.
\[
x_{i}=x_{i} * w_{i} \quad \text { for } i=0,1, \ldots, n-1
\]

The window operation is performed in place. The windowed data \(\mathbf{x}\) replaces the input data \(\mathbf{x}\).

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input data \\
number of elements in \(\mathbf{x}\)
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision array & windowed data \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Histogram}
int status \(=\) Histogram (double \(\mathbf{x}[\)], int \(\mathbf{n}\), double xBase, double \(\mathbf{x T o p}\), int hist [], double axis [], int intervals);

\section*{Purpose}

Computes the histogram of the \(\mathbf{x}\) input array. The histogram is obtained by counting the number of times that the elements in the input array fall in the \(i^{\text {th }}\) interval. Let
\[
\begin{aligned}
& \Delta x=(x T o p-x \text { Base }) / \text { intervals } \\
& \mathrm{y}_{\mathrm{i}}(\mathrm{x})= \begin{cases}1 & \text { if } \mathrm{i} \Delta \mathrm{x} \leq \mathrm{x}-\mathrm{xBase}<(\mathrm{i}+1) \Delta \mathrm{x} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
\]

The \(\mathrm{i}^{\text {th }}\) element of the histogram is:
\[
\text { hist }_{i}=\sum_{j=0}^{n-l} y_{i}\left(x_{j}\right)
\]

The values of the histogram axis are the mid-point values of the intervals.
\[
\text { axis }_{i}=i \Delta x+\Delta x / 2+x \text { Base }
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer \\
n
\end{tabular} & \begin{tabular}{l}
input data \\
number of elements in \(\mathbf{x}\) \\
xTop \\
intervals
\end{tabular}
\end{tabular} \begin{tabular}{l}
double-precision \\
integer
\end{tabular}\(\quad\)\begin{tabular}{l}
lower range \\
upper range \\
number of intervals
\end{tabular}, \begin{tabular}{l}
Oistogram of \(\mathbf{x}\) \\
Output
\end{tabular} \begin{tabular}{l}
hist \\
axis
\end{tabular}\(\quad\)\begin{tabular}{l}
integer array \\
double-precision array
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/*Generate a Gaussian distributed random array and find its histogram.*/
double x[2000], axis[50], max, min;
int hist[50], n, intervals, imax, imin;
n = 2000;
intervals = 50;
GaussNoise (n, 1.0E0, 17, x);
MaxMin (x, n, \&max, \&imax, \&min, \&imin);
Histogram (x, n, min, max, hist, axis, intervals);

```

\section*{IIRCascadeFiltering}
int status \(=\) IIRCascadeFiltering (const double \(\mathbf{x}[]\), int \(\mathbf{n}\), IRFilterPtr filterInformation, double y []);

\section*{Purpose}

Filters the input sequence using the cascade IIR filter specified by the filterInformation structure. Each of the IIR cascaded stages is 2nd order for lowpass and highpass filters, and 4th order for bandpass and bandstop filters.
filterInformation is the pointer to the filter structure which contains the filter coefficients and the internal filter information. You must allocate this structure by calling AllocIIRFilterPtr and then call one of the cascade IIR design functions (Bw_CascadeCoef, Ch_CascadeCoef, Elp_CascadeCoef, InvCh_CascadeCoef, Bessel_CascadeCoef) before calling this function.

The internal filter state information for the filtering operation is kept in the filterInformation structure, so this function can be called in a loop, continually filtering new input array data, producing new output filtered data.

If you have finished filtering one set of input data and wish to filter a completely new data set, you should call ResetIIRFilter before calling this function with the new data. ResetIIRFilter will cause the internal filter state information to be cleared before the next filtering operation.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \(\mathbf{n}\) & \begin{tabular}{l}
const double- \\
precision \\
integer
\end{tabular} \\
filterInformation & \begin{tabular}{l}
Array containing the raw data to be filtered. \\
Specifies the number of points in both the \\
input \(\mathbf{x}\) and output \(\mathbf{y}\). \\
filterInformation is the pointer to the filter \\
structure which contains the filter \\
coefficients and the internal filter \\
information. You must allocate this structure \\
by calling AllocIIRFilterPtr before \\
calling this cascade IIR filtering function. \\
Please refer to the function \\
AllocIIRFilterPtr for further \\
information about the filter structure.
\end{tabular} \\
\hline Output & \(\mathbf{y}\) & & \begin{tabular}{l}
double- \\
precision array
\end{tabular} \\
\begin{tabular}{ll}
Filtering operation. The size of this array \\
must be at least \(\mathbf{n}\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
Refer to error codes in \\
Appendix A.
\end{tabular} \\
\hline
\end{tabular}

\section*{IIRFiltering}
```

int status = IIRFiltering (double x [], int nx, double a [], double y1[], int na,
doubleb[], double x1[], int nb, double y[]);

```

\section*{Purpose}

Filters the input sequence using the IIR filter specified by reverse coefficients a[na]and forward coefficients \(\mathbf{b}[\mathbf{n b}]\) by
\[
y_{n}=\frac{1}{a_{0}}\left(\sum_{i=0}^{n b-1} b_{i} x_{n-i}-\sum_{i=1}^{n a-1} a_{i} y_{n-i}\right)
\]

The reverse and forward coefficients are obtained by respective IIR Coefficient functions such as Bw_Coef ().

\section*{Parameters}

(continues)

\section*{Parameters (Continued)}
\begin{tabular}{|l|l|l|l|}
\hline Output & \(\mathbf{y 1}\) & double-precision array & \begin{tabular}{l}
on output, \(\mathbf{y 1}[\mathbf{n a - 1]}\) contains the final \\
conditions for the next iterations.
\end{tabular} \\
on output, \(\mathbf{x 1}[\mathbf{n b}-1]\) contains the final \\
conditions for the next iterations. \\
double-precision array \\
y array contains the output of the IIR \\
filtering operation. The size of this \\
array must be at least \(\mathbf{n x}\).
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{Impulse}
int status \(=\) Impulse (int \(\mathbf{n}\), double amp, int index, double \(\mathbf{x}[])\);

\section*{Purpose}

Generates an array of numbers that has the pattern of an impulse waveform. The \(i^{\text {th }}\) element of the output array is obtained using the following formula.
\[
x_{i}= \begin{cases}\text { amp } & \text { if } \mathrm{i}=\text { index } \\ 0 & \text { otherwise }\end{cases}
\]

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & n amp index & \begin{tabular}{l}
integer \\
double-precision \\
integer
\end{tabular} & number of elements in \(\mathbf{x}\) amplitude impulse index \\
\hline Output & \(\mathbf{x}\) & double-precision array & impulse array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}
```

Example
/* The following code generates the impulse pattern
x = { 0.0, 0.0, 1.5, 0.0, 0.0 }. */
double x[5], amp;
int n, i;
n = 5;
i = 2;
amp = 1.5;
Impulse (n, amp, i, x);

```

\section*{ImpulseResponse}
```

int status = ImpulseResponse (double stimulus [ ] , double response [ ], int n,
double impulse [ ] );

```

\section*{Purpose}

Computes the impulse response of a network based on time-domain signals stimulus and response. The impulse response is in the time domain. The impulse response is the inverse Fourier transform of the transfer function.
```

impulse = Inverse Real FFT [Sxy(f) / Sxx(f)]

```
where \(\operatorname{Sxy}(\mathrm{f})\) is the two-sided cross power spectrum of the stimulus (x) with the response (y), and \(\operatorname{Sxx}(\mathrm{f})\) is the two-sided auto power spectrum of the stimulus.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & stimulus & double-precision array & \begin{tabular}{l}
contains the time-domain signal, \\
usually the network stimulus. \\
contains the time-domain signal, \\
usually the network response. \\
number of elements in the input array. \\
Valid Values: Powers of 2.
\end{tabular} \\
\hline Output & n & impulse & double-precision array \\
integer & \begin{tabular}{l}
impulse contains the impulse response \\
of the network based on time-domain \\
signals stimulus and response. The \\
size of this array must be at least \(\mathbf{n}\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{Integrate}
```

int status = Integrate (double x [ ], int n, double dt, double xInit, double
xFinal, double y []);

```

\section*{Purpose}

Computes the discrete integral of the input array. The \(i^{\text {th }}\) element of the resulting array is obtained using the following formula.
\[
y_{i}=\sum_{j=0}^{i}\left[x_{j-1}+4 x_{j}+x_{j+1}\right] * d t / 6
\]
where \(\mathbf{x}_{-1}=\) xInit and \(\mathbf{x}_{\mathrm{n}}=\mathbf{x F i n a l}\).

The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & input array \\
& \(\mathbf{n}\) & integer \\
dt & double-precision & number of elements in \(\mathbf{x}\) \\
& \(\mathbf{x I n i t}\) & double-precision & \begin{tabular}{l}
initial condition \\
doinal \\
double-precision
\end{tabular} \\
\hline Output & \(\mathbf{y}\) & double-precision array & integrated array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate an array with random numbers and integrate it. */
double x[200], y[200];
double dt, xInit, xFinal;
int n;
n = 200;
dt = 0.001;
xInit = -0.5;
xFinal = -0.25;
Uniform (n, 17, x);
Integrate (x, n, dt, xInit, xFinal, y);

```

\section*{InvCh_BPF}
```

int status =InvCh_BPF (double x [ ], int n, double fs, double fl, double fh,
double atten, int order, double y []);

```

\section*{Purpose}

Filters the input array using a digital bandpass inverse Chebyshev filter. The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & input data \\
& \(\mathbf{n}\) & integer & number of elements in \(\mathbf{x}\) \\
& \(\mathbf{f s}\) & double-precision & sampling frequency \\
& \(\mathbf{f l}\) & double-precision & lower cutoff frequency \\
& fh & double-precision & higher cutoff frequency \\
& atten & double-precision & stop band attenuation in dB \\
& order & integer & filter order \\
\hline Output & \(\mathbf{y}\) & double-precision array & filtered data \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate a random signal and filter it using a fifth order bandpass inverse
Chebyshev filter. The pass band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh, atten;
int n, order;
n = 256;
fs = 1000.0;
fl = 200.0;
fh = 300.0;
atten = 40.0;
order = 5;
Uniform (n, 17, x);
InvCh_BPF (x, n, fs, fl, fh, atten, order, y);

```

\section*{InvCh_BSF}
int \(\boldsymbol{s t a t u s}=\mathbf{I n v C h} _\mathbf{B S F}(\) double \(\mathbf{x}[\)], int \(\mathbf{n}\), double fs, double fl, double fh, double atten, int order, double y []);

\section*{Purpose}

Filters the input array using a digital bandstop inverse Chebyshev filter. The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & input data \\
& \(\mathbf{n}\) & integer & number of elements in \(\mathbf{x}\) \\
& \(\mathbf{f s}\) & double-precision & sampling frequency \\
& fl & double-precision & lower cutoff frequency \\
fh \\
& atten & double-precision \\
double-precision & higher cutoff frequency \\
order & integer & filter band attenuation in dB \\
\hline Output & \(\mathbf{y}\) & double-precision array & filtered data \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate a random signal and filter it using a fifth order bandstop inverse
Chebyshev filter. The stop band is from 200.0 to 300.0. */
double x[256], y[256], fs, fl, fh, atten;
int n, order;
n = 256;
fs=1000.0;
fl = 200.0;
fh = 300.0;
atten = 40.0;
order = 5;
Uniform (n, 17, x);
InvCh_BSF (x, n, fs, fl, fh, atten, order, y);

```

\section*{InvCh_CascadeCoef}
```

int status = InvCh_CascadeCoef (double fs, double fL, double fH, double atten,
IIRFilterPtr filterInformation);

```

\section*{Purpose}

Generates the set of cascade form filter coefficients to implement an IIR filter as specified by the inverse Chebyshev filter model.
filterInformation is the pointer to the filter structure which contains the filter coefficients and the internal filter information. You must allocate this structure by calling AllocIIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first call FreeIIRFilterPtr to free the present filter structure and then call AllocIIRFilterPtr with the new type and order parameters before calling this design function.

If the type and order remain the same, and you can call this IIR design function without calling FreeIIRFilterPtr and AllocIIRFilterPtr. In this case, you should properly reset the filtering operation for that structure by calling ResetIIRFilter before the first call to IIRCascadeFiltering.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & fs & fL & double-precision \\
double-precision
\end{tabular} \begin{tabular}{l}
Specifies the sampling frequency in Hz. \\
fitten \\
Specifies the desired lower cutoff \\
frequency of the filter in Hz. \\
Specifies the desired upper cutoff \\
frequency of the filter in Hz \\
Specifies the stop band attenuation, in \\
decibels, of the IIR filter to be designed.
\end{tabular}\(|\)\begin{tabular}{lll}
filterInformation & IIRFilterPtr & \begin{tabular}{l}
filterInformation is the pointer to the \\
filter structure which contains the filter \\
coefficients and the internal filter \\
information. You must allocate this \\
structure by calling \\
AllocIIRF ilterPtr before calling \\
this cascade IIR filter design function. \\
Please refer to the function \\
AllocIIRFilterPtr for further \\
information about the filter structure.
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
Refer to error codes in \\
Appendix A.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Design a cascade lowpass inverse Chebyshev IIR filter */
double fs, fl, fh, atten, x[256], y[256];
int type,order,n;
IIRFilterPtr filterInfo;
n = 256;
fs = 1000.0;
fl = 200.0;
atten = 60.0;
order = 5;
type = 0; /* lowpass */
Uniform(n,17,x);
filterInfo = AllocIIRFilterPtr(type,order);
if(filterInfo!=0) {
InvCh_CascadeCoef(fs,fl,fh,atten,filterInfo);
IIRCascadeFiltering(x,n,filterInfo,y);
FreeIIRFilterPtr(filterInfo);
}

```

\section*{InvCh_Coef}
```

int status = InvCh_Coef (int type, int order, double fs, double fL,
double fH,double atten, double a[], int na, double
b [], int nb);

```

\section*{Purpose}

Generates the set of filter coefficients to implement an IIR filter as specified by the inverse Chebyshev filter model. The type parameter has the following valid values.
\[
\text { type }= \begin{cases}0 & \text { lowpass filter, } \mathbf{f H} \text { is not used. } \\ 1 & \text { highpass filter, } \mathbf{f H} \text { is not used. } \\ 2 & \text { bandpass filter } \\ 3 & \text { bandstop filter }\end{cases}
\]
\(\mathbf{a}[\mathbf{n a}]\) and \(\mathbf{b}[\mathbf{n b}]\) are the reverse and forward filter coefficients. The actual filtering
\[
y_{n}=\frac{1}{a_{0}}\left(\sum_{i=0}^{n b-l} b_{i} x_{n-i}-\sum_{i=1}^{n a-l} a_{i} y_{n-i}\right)
\]
is achieved by using the function IIRFiltering.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
type \\
order fs \\
fL \\
fH \\
atten \\
na \\
nb
\end{tabular} & \begin{tabular}{l}
integer \\
integer \\
double-precision \\
double-precision \\
double-precision \\
double-precision \\
integer \\
integer
\end{tabular} & \begin{tabular}{l}
controls the filter type of the inverse Chebyshev IIR filter coefficients. order of the IIR filter. sampling frequency in Hz . desired lower cutoff frequency of the filter in Hz . \\
desired lower cutoff frequency of the filter in Hz . \\
stop band attenuation, in decibels, of the IIR filter to be designed. \\
number of coefficients in the a coefficient array. \\
number of coefficients in the \(\mathbf{b}\) coefficient array.
\end{tabular} \\
\hline Output & \begin{tabular}{l}
a \\
b
\end{tabular} & double-precision array double-precision array & array containing the reverse coefficients of the designed IIR filter. array containing the forward coefficients of the designed IIR filter. \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{InvCh_HPF}
```

int status = InvCh_HPF (double x [], int n, double fs, double fc, double atten,

``` int order, double y []);

\section*{Purpose}

Filters the input array using a digital highpass inverse Chebyshev filter. The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & input data \\
& \(\mathbf{n}\) & integer & number of elements in \(\mathbf{x}\) \\
& fs & double-precision & sampling frequency \\
& atten \\
order & double-precision \\
double-precision \\
integer & cutoff frequency \\
Stop band attenuation in dB \\
\hline Output & \(\mathbf{y}\) & double-precision array & filter order \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate a random signal and filter it using a fifth order highpass inverse
Chebyshev filter. */
double x[256], y[256], fs, fc, atten;
int n, order;
n = 256;
fs=1000.0;
fc=200.0;
atten = 40.0;
order = 5;
Uniform (n, 17, x);
InvCh_HPF (x, n, fs, fc, atten, order, y);

```

\section*{InvCh_LPF}
int status = InvCh_LPF (double \(\mathbf{x}[\)], int \(\mathbf{n}\), double fs, double fc, double atten, int order, double y []);

\section*{Purpose}

Filters the input array using a digital lowpass inverse Chebyshev filter. The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & input data \\
& \(\mathbf{n}\) & integer \\
double-precision & number of elements in \(\mathbf{x}\) \\
& \(\mathbf{f s}\) & fc \\
& atten \\
order & \begin{tabular}{l}
double-precision \\
double-precision \\
integer
\end{tabular} & cutoff frequency \\
Otop band attenuation in dB \\
Output & \(\mathbf{y}\) & double-precision array & filter order data \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate a random signal and filter it using a fifth order lowpass inverse
Chebyshev filter. */
double $x[256], y[256], f s, f c, ~ a t t e n ;$
int $n$, order;
$\mathrm{n}=256$;
$\mathrm{fs}=1000.0$;
$\mathrm{fc}=200.0$;
atten $=40.0$;
order $=5$;
Uniform ( $\mathrm{n}, 17, \mathrm{x}$ ) ;
InvCh_LPF (x, $n, f s, f c, ~ a t t e n, ~ o r d e r, ~ y) ;$

```

\section*{InvF_Dist}
int status \(=\mathbf{I n v F}\) _Dist (double \(\mathbf{p}\), int \(\mathbf{n}\), int \(\mathbf{m}\), double \(* \mathbf{f}\));

\section*{Purpose}

Calculates \(\mathbf{f}\), given a probability \(0 \leq \mathbf{p}<1\), such that
\[
\operatorname{prob}(\mathrm{F}<\mathrm{f})=\mathrm{p}
\]
where F is a random variable from an F -distribution with \(\mathbf{n}\) and \(\mathbf{m}\) degrees of freedom.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{p}\) & \begin{tabular}{l}
double-precision \\
integer \\
integer
\end{tabular} & \begin{tabular}{l}
probability \((0 \leq \mathbf{p}<1)\) \\
degrees of freedom \\
degrees of freedom
\end{tabular} \\
\hline Output & \(\mathbf{f}\) & double-precision & \begin{tabular}{l}
the unique number \(\mathbf{f}\) such that \\
prob \((\mathrm{F}<\mathrm{f})=\mathrm{p}\), where F is a \\
random variable from an \(\mathrm{F}-\) \\
distribution with \(\mathbf{n}\) and \(\mathbf{m}\) \\
degrees of freedom.
\end{tabular} \\
\hline
\end{tabular}

Note: When \(\mathrm{p}=0, \mathrm{f}=0\).

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

double p, f;
int n,m;
p = 0.635;
n = 2;
m = 4;
InvF_Dist (p, n, m, \&f);

```

\section*{InvFFT}
int status \(=\mathbf{I n v F F T}(\) double \(\mathbf{x}[]\), double \(\mathbf{y}[\)], int \(\mathbf{n}\));

\section*{Purpose}

Computes the inverse Fast Fourier Transform of the complex data. Let \(\mathrm{X}=\mathrm{x}+\mathrm{jy}\) be the complex array, then:
\[
Y=F F T^{-1}\{X\}
\]

The operation is done in place and the input arrays \(\mathbf{x}\) and \(\mathbf{y}\) are overwritten.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
double-precision array
\end{tabular} & \begin{tabular}{l}
real part of complex array \\
imaginary part of complex \\
array \\
number of elements
\end{tabular} \\
\hline Output & \(\mathbf{n}\) & integer & \begin{tabular}{l}
double-precision array \\
double-precision array
\end{tabular} \\
\(\mathbf{y}\) & \begin{tabular}{l}
real part of IFFT \\
imaginary part of IFFT
\end{tabular} \\
\hline
\end{tabular}

Note: The number of elements (n) must be a power of two.

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate two arrays with random numbers and compute its inverse Fast
Fourier Transform. */
double x[256], y[256];
int n;
n = 256;
Uniform (n, 17, x);
Uniform (n, 17, y);
InvFFT (x, y, n);

```

\section*{InvFHT}
int status = InvFHT (double \(\mathbf{x}[\)], int \(\mathbf{n}\));

\section*{Purpose}

Computes the inverse Fast Hartley Transform using the following formula:
\[
x_{i}=\frac{1}{n} \sum_{k=0}^{n-1} X_{k} \operatorname{cas}(2 \pi i k / n)
\]
where \(\mathrm{x}_{\mathrm{i}}\) is the \(\mathrm{i}^{\text {th }}\) point of the inverse FHT, and cas \((\mathrm{x})=\cos (\mathrm{x})+\sin (\mathrm{x})\).
The operation is done in place and the \(\mathbf{x}\) input array is overwritten.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
array to be transformed \\
number of elements
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision array & inverse Fast Hartley Transform \\
\hline
\end{tabular}

Note: The number of elements (n) must be a power of two.

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate an array with random numbers and compute its inverse Fast Hartley
Transform. */
double x[256];
int n;
n = 256;
Uniform (n, 17, x);
InvFHT (x, n);

```

\section*{InvMatrix}
int status = InvMatrix (void *x, int n, void *y);

\section*{Purpose}

Finds the inverse matrix of an input matrix. The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same matrices.

Parameters
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision 2D array \\
integer
\end{tabular} & \begin{tabular}{l}
input matrix \\
dimension size of matrix
\end{tabular} \\
\hline Output & \(\mathbf{y}\) & double-precision 2D array & inverse matrix \\
\hline
\end{tabular}

Note: The input matrix must be an n-by-n square matrix.

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{InvN_Dist}
int status = InvN_Dist (double p, double *x);

\section*{Purpose}

Calculates \(\mathbf{x}\), given a probability \(0<\mathbf{p}<1\), such that:
\(\operatorname{prob}(X<x)=p\)
where X is a random variable from a standard normal distribution.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{p}\) & double-precision & probability \((0<\mathbf{p}<1)\) \\
\hline Output & \(\mathbf{x}\) & double-precision & \begin{tabular}{l}
the unique number \(\mathbf{x}\) such that \\
prob \((\mathrm{X}<\mathrm{x})=\mathrm{p}\), where X is a \\
random variable from a \\
standard normal distribution
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}
```

Example
double p, x; $\mathrm{p}=0.5$; InvN_Dist (p, \&x);

```

\section*{InvT_Dist}
int status \(=\) InvT_Dist (double p, int n, double *t);

\section*{Purpose}

Calculates \(\mathbf{t}\), given a probability \(0<\mathbf{p}<1\), such that:
\[
\operatorname{prob}(T<t)=p
\]
where T is a random variable from a T-distribution with \(\mathbf{n}\) degrees of freedom.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{p}\) & \begin{tabular}{l}
double-precision \\
integer
\end{tabular} & \begin{tabular}{l}
probability \((0<\mathbf{p}<1)\) \\
degrees of freedom
\end{tabular} \\
\hline Output & \(\mathbf{t}\) & double-precision & \begin{tabular}{l}
the unique number \(\mathbf{t}\) such that \\
prob(\(\mathrm{T}<\mathrm{t})=\mathrm{p}\), where T is a \\
random variable from a T- \\
distribution with \(\mathbf{n}\) degrees of \\
freedom
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

double p, t;
int n;
p = 0.635;
n = 2;
InvT_Dist (p, n, \&t);

```

\section*{InvXX_Dist}
int status = InvXX_Dist (double p, int n, double *x);

\section*{Purpose}

Calculates \(\mathbf{x}\), given a probability \(0 \leq \mathbf{p}<1\), such that:
\[
\operatorname{prob}(\chi<x)=p
\]
where \(\chi\) is a random variable from a chi-square distribution with \(\mathbf{n}\) degrees of freedom.
Parameters
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{p}\) & \begin{tabular}{l}
double-precision \\
integer
\end{tabular} & \begin{tabular}{l}
probability \((0 \leq \mathbf{p}<1)\) \\
degrees of freedom
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision & \begin{tabular}{l}
the unique number \(\mathbf{x}\) such that \\
prob \((\chi<\mathrm{x})=\mathrm{p}\), where \(\chi\) is a \\
random variable from a chi- \\
square distribution with \(\mathbf{n}\) \\
degrees of freedom.
\end{tabular} \\
\hline
\end{tabular}

Note: When \(\mathrm{p}=0, \mathrm{x}=0\).

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}
```

Example
double p, x;
int n;
p = 0.635;
n = 2;
InvXX_Dist (p, n, \&x);

```

\section*{Ksr_BPF}
```

int status = Ksr_BPF (double fs, double fl, double fh, int n,
double coef [],double beta);

```

\section*{Purpose}

Designs a digital bandpass FIR linear phase filter using a Kaiser window. This function generates only the filter coefficients. No filtering of data is actually performed.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{f s}\) & double-precision & sampling frequency \\
& fl & double-precision & lower cutoff frequency \\
& fh & double-precision & higher cutoff frequency \\
integer \\
beta & double-precision & \begin{tabular}{l}
shape parameter
\end{tabular} \\
\hline Output & coef & double-precision array & filter coefficients \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

The beta parameter controls the shape of a Kaiser window. A larger beta value results in a narrower Kaiser window. Some beta values and their equivalent windows are listed in the following table:
\begin{tabular}{|l|l|}
\hline beta & Window \\
\hline 0.00 & Rectangular \\
1.33 & Triangle \\
3.86 & Hanning \\
4.86 & Hamming \\
7.04 & Blackman \\
\hline
\end{tabular}

Refer to Digital Signal Processing by Oppenheim and Schafer for more information.
```

Example
/* Design a 55-point bandpass FIR linear phase filter using a Kaiser window
with beta = 4.5. Filter the incoming signal with the designed filter. */
double x[256], coef[55], y[310], fs, fl, fh, beta;
int n, m;
fs = 1000.0; /* sampling frequency */
fl = 200.0; /* desired lower cutoff frequency */
fh = 300.0; /* desired higher cutoff frequency */
/* pass band is from 200.0 to 300.0 */
n = 55; /* filter length */
beta = 3;
m = 256;
Ksr_BPF (fs, fl, fh, n, coef, beta);
Convolve (coef, n, x, m, y);/* convolve the filter with the signal */

```

\section*{Ksr_BSF}
```

int status = Ksr_BSF (double fs, double fl, double fh, int n, double coef [],
double beta);

```

\section*{Purpose}

Designs a digital bandstop FIR linear phase filter using a Kaiser window. This function generates only the filter coefficients. No filtering of data is actually performed.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{f s}\) & double-precision & sampling frequency \\
& fl & double-precision & lower cutoff frequency \\
& \(\mathbf{f h}\) & double-precision & higher cutoff frequency \\
& \(\mathbf{n}\) & integer \\
beta & double-precision & number of filter coefficients \\
& Shape parameter \\
\hline Output & coef & double-precision array & filter coefficients \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

The beta parameter controls the shape of a Kaiser window. A larger beta value results in a narrower Kaiser window. Some beta values and their equivalent windows are listed in the following table:
\begin{tabular}{|l|l|}
\hline beta & Window \\
\hline 0.00 & Rectangular \\
1.33 & Triangle \\
3.86 & Hanning \\
4.86 & Hamming \\
7.04 & Blackman \\
\hline
\end{tabular}

Refer to Digital Signal Processing by Oppenheim and Schafer for more information.

\section*{Example}
```

/* Design a 55-point bandstop FIR linear phase filter using a Kaiser window
with beta = 4.5. Filter the incoming signal with the designed filter. */
double x[256], coef[55], y[310], fs, fl, fh, beta;
int n, m;
fs = 1000.0; /* sampling frequency */
fl = 200.0; /* desired lower cutoff frequency */
fh = 300.0; /* desired higher cutoff frequency */
n = 55; /* filter length */
beta = 3;
m = 256;
Ksr_BSF (fs, fl, fh, n, coef, beta);
Convolve (coef, n, x, m, y);/* convolve the filter with the signal */

```

\section*{Ksr_HPF}
int status = Ksr_HPF (double fs, double fc, int n, double coef [] , double beta);

\section*{Purpose}

Designs a digital highpass FIR linear phase filter using a Kaiser window. This function generates only the filter coefficients. No filtering of data is actually performed.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{f s}\) & double-precision & sampling frequency \\
& fc \\
n \\
beta
\end{tabular}\(\quad\)\begin{tabular}{l}
double-precision \\
integer \\
double-precision
\end{tabular}\(\quad\)\begin{tabular}{l}
number of filter coefficients \\
shape parameter
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

The beta parameter controls the shape of a Kaiser window. A larger beta value results in a narrower Kaiser window. Some beta values and their equivalent windows are listed in the following table:
\begin{tabular}{|l|l|}
\hline beta & Window \\
\hline 0.00 & Rectangular \\
1.33 & Triangle \\
3.86 & Hanning \\
4.86 & Hamming \\
7.04 & Blackman \\
\hline
\end{tabular}

Refer to Digital Signal Processing by Oppenheim and Schafer for more information.

\section*{Example}
```

/* Design a 55-point highpass FIR linear phase filter using a Kaiser window
with beta = 4.5. Filter the incoming signal with the designed filter. */
double x[256], coef[55], y[310], fs, fc, beta;
int n, m;
fs = 1000.0; /* sampling frequency */
fc = 200.0; /* desired cutoff frequency */
n = 55; /* filter length */
beta = 4.5;
m = 256;
Ksr_HPF (fs, fc, n, coef, beta);
Convolve (coef, n, x, m, y); /* convolve the filter with the signal */

```

\section*{Ksr_LPF}
int status = Ksr_LPF (double fs, double fc, int n, double coef [] , double beta);

\section*{Purpose}

Designs a digital lowpass FIR linear phase filter using a Kaiser window. This function generates only the filter coefficients. No filtering of data is actually performed.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{f s}\) & double-precision & sampling frequency \\
& fc & double-precision \\
integer & cutoff frequency \\
number of filter coefficients \\
beta & double-precision & shape parameter \\
\hline Output & coef & double-precision array & filter coefficients \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

The beta parameter controls the shape of a Kaiser window. A larger beta value results in a narrower Kaiser window. Some beta values and their equivalent windows are listed in the following table:
\begin{tabular}{|l|l|}
\hline beta & Window \\
\hline 0.00 & Rectangular \\
1.33 & Triangle \\
3.86 & Hanning \\
4.86 & Hamming \\
7.04 & Blackman \\
\hline
\end{tabular}

Refer to Digital Signal Processing by Oppenheim and Schafer for more information.

\section*{Example}
```

/* Design a 55-point lowpass FIR linear phase filter using a Kaiser window
with beta = 4.5. Filter the incoming signal with the designed filter. */
double x[256], coef[55], y[310], fs, fc, beta;
int n, m;
fs = 1000.0; /* sampling frequency */
fc = 200.0; /* desired cutoff frequency */
n = 55; /* filter length */
beta = 4.5;
m = 256;
Ksr_LPF (fs, fc, n, coef, beta);
Convolve (coef, n, x, m, y); /* convolve the filter with*/
/*the signal */

```

\section*{KsrWin}
int status \(=\) KsrWin (double \(\mathbf{x}[\)], int \(\mathbf{n}\), double beta);

\section*{Purpose}

Applies a Kaiser window to the \(\mathbf{x}\) input signal. The Kaiser window is defined by the formula:
\[
w_{i}=I o\left(\text { beta } *\left(1.0-a^{2}\right)^{1 / 2}\right) / \text { Io (beta) for } i=0,1, \ldots, n-1
\]
where \(a=|1-2 i / n|\); and Io represents the zero \({ }^{\text {th }}\)-order modified Bessel function of the first kind.

The output signal is obtained by the formula:
\[
x_{i}=x_{i}^{*} w_{i} \quad \text { for } i=0,1, \ldots, n-1
\]

The window operation is performed in place. The windowed data \(\mathbf{x}\) replaces the input data \(\mathbf{x}\).

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
n \\
beta
\end{tabular} & double-precision array integer double-precision & input data number of elements in \(\mathbf{x}\) shape parameter \\
\hline Output & \(\mathbf{x}\) & double-precision array & windowed data \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

The beta parameter controls the shape of a Kaiser window. A larger beta value results in a narrower Kaiser window. Some beta values and their equivalent windows are listed in the following table:
\begin{tabular}{|l|l|}
\hline beta & Window \\
\hline 0.00 & Rectangular \\
1.33 & Triangle \\
3.86 & Hanning \\
4.86 & Hamming \\
7.04 & Blackman \\
\hline
\end{tabular}

Refer to Digital Signal Processing by Oppenheim and Schafer for more information.

\section*{LinEqs}
int status \(=\operatorname{LinEqs}(\operatorname{void} * \mathbf{A}\), double \(\mathbf{y}[]\), int \(\mathbf{n}\), double \(\mathbf{x}[])\);

\section*{Purpose}

Solves the linear system of equations:
\[
A x=y
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{A}\) & \begin{tabular}{l}
double-precision 2D array \\
double-precision 1D array \\
integer
\end{tabular} & \begin{tabular}{l}
input matrix \\
known vector \\
n
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision 1D array & solution of vector \\
\hline
\end{tabular}

Note: The A input matrix must be an n-by-n square matrix.

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Find the solution to the linear system of equations. */
double A[10][10], y[10], x[10];
int n;
n = 10;
:
LinEqs (A, y, n, x);

```

\section*{LinEv1D}
int status \(=\mathbf{L i n E v 1 D}(\) double \(\mathbf{x}[]\), int \(\mathbf{n}\), double a, double \(\mathbf{b}\), double \(\mathbf{y}[\)] ;

\section*{Purpose}

Performs a linear evaluation of a 1D array. The \(\mathrm{i}^{\text {th }}\) element of the output array is obtained using the formula:
\[
y_{i}=a * x_{i}+b
\]

The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

Parameters
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer \\
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements \\
multiplicative constant \\
additive constant
\end{tabular} \\
\hline Output & \(\mathbf{y}\) & double-precision array & linearly evaluated array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{LinEv2D}
int status \(=\operatorname{LinEv2D}(\operatorname{void} * \mathbf{x}\), int \(\mathbf{n}\), int \(\mathbf{m}\), double \(\mathbf{a}\), double \(\mathbf{b}\), void * \(\mathbf{y}\));

\section*{Purpose}

Performs a linear evaluation of a 2D array. The (\(\mathrm{i}^{\text {th }}, \mathrm{j}^{\text {th }}\)) element of the output array is obtained using the formula:
\[
y_{i, j}=a * x_{i, j}+b
\]

The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision 2D array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements in first \\
dimension \\
number of elements in second \\
dimension \\
multiplicative constant \\
additive constant
\end{tabular} \\
\hline Output & \(\mathbf{m}\) & \(\mathbf{a}\) & \begin{tabular}{l}
integer \\
double-precision \\
double-precision
\end{tabular}
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{LinFit}
```

int status = LinFit (double x[], double y [], int n, double z[], double *slope,
double *intercept, double *mse);

```

\section*{Purpose}

Finds the slope and intercept values that best represent the linear fit of the data points (\(\mathbf{x}, \mathbf{y}\)) using the least squares method. The \(\mathrm{i}^{\text {th }}\) element of the output array is obtained by using the following formula:
\[
z_{i}=\text { slope } *_{i}+\text { intercept }
\]

The mean squared error (mse) is obtained using the following formula:
\[
m s e=\sum_{i=0}^{n-1}\left|z_{i}-y_{i}\right|^{2} / n
\]
where \(\mathbf{n}\) is the number of sample points.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
\(\mathbf{x}\) values \\
values \\
number of sample points
\end{tabular} \\
\hline Output & \(\mathbf{z}\) \\
slope \\
intercept \\
mse
\end{tabular}\(\quad\)\begin{tabular}{l}
double-precision array \\
double-precision \\
double-precision \\
double-precision
\end{tabular}\(\quad\)\begin{tabular}{l}
best fit array \\
slope of line \\
y-intercept \\
mean squared error
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}
```

Example
/* Generate a ramp pattern and find the best linear fit. */
double x[200], y[200], z[200];
double start, end, a, b, slope, intercept, mse;
int n;
n = 200;
start = 0.0;
end = 1.99E2;
Ramp (n, start, end, x); /* x[i] = i */
a = 3.5;
b = -2.75;
LinEv1D (x, n, a, b, y); /* y[i] = a*x[i] + b */
/* Find the best linear fit in z. */
LinFit (x, y, n, z, \&slope, \&intercept, \&mse);

```

\section*{LU}
int status \(=\mathbf{L U}(\operatorname{void} * \mathbf{a}\), int \(\mathbf{n}\), int \(\mathbf{p}[]\), int \(* \operatorname{sign})\);

\section*{Purpose}

Performs an LU matrix decomposition.
\[
a=L * U
\]
where \(L\) is an \(\mathbf{n}\) by \(\mathbf{n}\) lower triangular matrix whose main diagonal elements are all ones, and \(U\) is an upper triangular matrix.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{a}\) & \begin{tabular}{l}
double-precision 2D array \\
integer
\end{tabular} & \begin{tabular}{l}
input matrix \\
dimension size
\end{tabular} \\
\hline Output & \(\mathbf{a}\) & \begin{tabular}{l}
double-precision 2D array \\
integer array \\
integer
\end{tabular} & \begin{tabular}{l}
LU decomposition \\
permutation vector \\
sign
\end{tabular}
\end{tabular}

Note: The input matrix is overwritten by the LU output matrices.

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

After the function executes, the input matrix a is replaced with two triangular matrices. L occupies the lower triangular part of \(\mathbf{a}\) and \(U\) occupies the upper triangular part of \(\mathbf{a}\). The permutation vector \(\mathbf{p}\) records possible row exchange information in the LU decomposition. \(\boldsymbol{\operatorname { s i g n }}=0\) indicates that there is no such exchange or that there is an even number of such exchanges. \(\boldsymbol{s i g n}=1\) indicates that there is an odd number of such exchanges. \(\mathbf{p}\) and sign are useful when solving the linear equations or computing the determinant. LU is most useful when used in conjunction with BackSub and ForwSub to solve a set of linear equations with the same matrix a.

For more information, refer to Numerical Recipes by Press, et al., Cambridge University Press.

\section*{MatrixMul}
```

int status = MatrixMul (void *x, void *y, int n, int k, int m, void *z);

```

\section*{Purpose}

Multiplies two 2D input matrices. The \(\left(\mathrm{i}^{\text {th }}, \mathrm{j}^{\text {th }}\right)\) element of the output matrix is obtained using the formula:
\[
z_{i, j}=\sum_{p=0}^{k-1} x_{i, p} * y_{p, j}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision 2D \\
array \\
double-precision 2D \\
array
\end{tabular} & \(\mathbf{x}\) input matrix \\
& \(\mathbf{y}\) & \(\mathbf{n}\) input matrix \\
integer \\
integer & \begin{tabular}{l}
first dimension of \(\mathbf{x}\) \\
second dimension of \(\mathbf{x} ;\) first dimension \\
of \(\mathbf{y}\) \\
second dimension of \(\mathbf{y}\)
\end{tabular} \\
\hline Output & \(\mathbf{z}\) & \begin{tabular}{l}
integer \\
double-precision 2D \\
array
\end{tabular} & output matrix \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{Parameter Discussion}

Be careful to use the correct array sizes. The following array sizes must be met:
- \(\mathbf{x}\) must be (\(\mathbf{n}\) by \(\mathbf{k}\)).
- \(\mathbf{y}\) must be (\(\mathbf{k}\) by \(\mathbf{m}\)).
- \(\mathbf{z}\) must be (\(\mathbf{n}\) by \(\mathbf{m}\)).

\section*{Example}
```

/* Multiply two matrices. Note: A x B _ B x A, in general.*/
double x[10][20], y[20][15], z[10][15];
int n, k, m;
n = 10;
k = 20;
m = 15;
MatrixMul (x, y, n, k, m, z);

```

\section*{MaxMin1D}
```

int status = MaxMin1D (double x [ ], int n, double *max, int *imax, double *mm,
int *imin);

```

\section*{Purpose}

Finds the maximum and minimum values in the input array, as well as the respective indices of the first occurrence of the maximum and minimum values.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \[
\begin{aligned}
& \mathbf{x} \\
& \mathbf{n}
\end{aligned}
\] & double-precision array integer & \begin{tabular}{l}
input array \\
number of elements
\end{tabular} \\
\hline Output & \begin{tabular}{l}
\(\max\) \\
imax \\
\(\min\) \\
imin
\end{tabular} & double-precision integer double-precision integer & maximum value index of max in \(\mathbf{x}\) array minimum value index of \(\boldsymbol{m i n}\) in \(\mathbf{x}\) array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate an array with random and find the maximum and minimum values. */
double x[20], y[20];
double max, min;
int n, imax, imin;
n = 20;
Uniform (n, 17, x);
MaxMin1D (x, n, \&max, \&imax, \&min, \&imin);

```

\section*{MaxMin2D}
```

int status = MaxMin2D (void *x, int n, int m, double *max, int *imax,
int *jmax, double *min, int *imin, int *jmin);

```

\section*{Purpose}

Finds the maximum and the minimum values in the 2D input array, as well as the respective indices of the first occurrence of the maximum and minimum values. The \(\mathbf{x}\) array is scanned by rows.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision 2D array \\
integer \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements in first dimension \\
of \(\mathbf{x}\) \\
number of elements in second \\
dimension of \(\mathbf{x}\)
\end{tabular} \\
\hline Output & \(\mathbf{m a x}\) \\
\(\mathbf{i m a x}\) & integer & \begin{tabular}{l}
double-precision \\
integer
\end{tabular} & \begin{tabular}{l}
maximum value \\
index of max in \(\mathbf{x}\) array (first \\
dimension) \\
index of max in \(\mathbf{x}\) array (second \\
dimension) \\
minimum value \\
index \\
index of \(\mathbf{m i n}\) in \(\mathbf{x}\) array (first \\
dimension) \\
index of \(\mathbf{m i n}\) in \(\mathbf{x}\) array (second \\
dimension)
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}
```

Example
/* This example finds the maximum and minimum values as well as their location
within the array. */
double x[5][10], max, min;
int n, m, imax, jmax, imin, jmin;
n = 5;
m = 10;
MaxMin2D (x, n, m, \&max, \&imax, \&jmax, \&min, \&imin, \&jmin);

```

\section*{Mean}
int status = Mean (double \(\mathbf{x}[\)], int \(\mathbf{n}\), double *meanval);

\section*{Purpose}

Computes the mean (average) value of the input array. The following formula is used to find the mean.
meanval \(=\sum_{i=0}^{n-1} x_{i} / n\)

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements in \(\mathbf{x}\)
\end{tabular} \\
\hline Output & meanval & double-precision & mean value \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Median}
int status = Median (double \(\mathbf{x}[\)], int \(\mathbf{n}\), double *medianval);

\section*{Purpose}

Finds the median value of the \(\mathbf{x}\) input array. To find the median value, the input array is first sorted in ascending order. Let S be the sorted array, then:
\[
\text { medianval }= \begin{cases}S\left(\frac{\mathrm{n}}{2}\right) & \text { if } \mathrm{n} \text { is odd } \\ 0.5 *\left(\mathrm{~S}\left(\frac{\mathrm{n}}{2}-1\right)+\mathrm{S}\left(\frac{\mathrm{n}}{2}\right)\right) & \text { if } \mathrm{n} \text { is even }\end{cases}
\]

Note: The \(\mathbf{x}\) input array is not changed.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements in \(\mathbf{x}\)
\end{tabular} \\
\hline Output & medianval & double-precision & median value \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Mode}
```

int status = Mode (double x [ ], int n, double xBase, double xTop, int intervals,
double *modeval);

```

\section*{Purpose}

Finds the mode of the \(\mathbf{x}\) input array. The mode is defined as the value that most often occurs in a given set of samples. This function determines the mode in terms of the histogram of the input array.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
n \\
xBase \\
xTop \\
intervals
\end{tabular} & double-precision array integer double-precision double-precision integer & \begin{tabular}{l}
input array \\
number of elements in \(\mathbf{x}\) lower range upper range number of intervals
\end{tabular} \\
\hline Output & modeval & double-precision & mode value \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate a Gaussian distributed random array and find its mode. */
double x[2000], max, min, modeval;
int n, intervals, imax, imin;
n = 2000;
intervals = 50;
GaussNoise (n, 1.0E0, 17, x);
MaxMin1D (x, n, \&max, \&imax, \&min, \&imin);
Mode (x, n, min, max, intervals, \&modeval);

```

\section*{Moment}
int status \(=\) Moment \((\) double \(\mathbf{x}[]\), int \(\mathbf{n}\), int order, double *momentval \()\);

\section*{Purpose}

Computes the moment about the mean of the input array with the specified order. The formulas used to find the moment are as follows.
\[
\begin{aligned}
& \text { momentval }=\sum_{i=0}^{n-1} \frac{\left[x_{i}-a v e\right]^{\text {order }}}{n} \\
& \text { ave }=\sum_{i=0}^{n-1} x_{i} / n
\end{aligned}
\]

\section*{Parameters}
\(\left.\)\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
nnteger \\
order
\end{tabular} & \begin{tabular}{l}
input array \\
integer
\end{tabular}
\end{tabular} \begin{tabular}{l}
number of elements in \(\mathbf{x}\) \\
moment order
\end{tabular} \right\rvert\, \begin{tabular}{ll}
Output & momentval \\
double-precision & moment about the mean \\
\hline
\end{tabular}

Note: order must be greater than zero.

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate an array with random numbers and determine its skewness (third
order moment) and its kurtosis (fourth order moment). */
double x[200], skew, kurtosis;
int n, order;
n = 200;
Uniform (n, 17, x);
order = 3;
Moment (x, n, order, \&skew);
order = 4;
Moment (x, n, order, \&kurtosis);

```

\section*{Mul1D}
int status = Mul1D (double \(\mathbf{x}[\)], double \(\mathbf{y}[\)], int n, double z[]);

\section*{Purpose}

Multiplies two 1D arrays. The \(\mathrm{i}^{\text {th }}\) element of the output array is obtained using the following formula.
\[
z_{i}=x_{i}^{*} y_{i}
\]

The operation can be performed in place; that is, \(\mathbf{z}\) can be the same array as either \(\mathbf{x}\) or \(\mathbf{y}\).

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
\(\mathbf{x}\) input array \\
\(\mathbf{y}\) input array \\
number of elements to be \\
multiplied
\end{tabular} \\
\hline Output & \(\mathbf{z}\) & double-precision array & result array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Mul2D}
int status \(=\operatorname{Mul2D}\left(\operatorname{void} * \mathbf{x}, \operatorname{void}^{*} \mathbf{y}\right.\), int \(\mathbf{n}\), int \(\mathbf{m}\), void \(\left.{ }^{\mathbf{z}}\right)\);

\section*{Purpose}

Multiplies two 2D arrays. The (\(\mathrm{i}^{\text {th }}, \mathrm{j}^{\text {th }}\)) element of the output array is obtained using the following formula.
\[
z_{i, j}=x_{i, j} * y_{i, j}
\]

The operation can be performed in place; that is, \(\mathbf{z}\) can be the same array as either \(\mathbf{x}\) or \(\mathbf{y}\).

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision 2D array \\
double-precision 2D array \\
integer
\end{tabular} & \begin{tabular}{l}
\(\mathbf{x}\) input array \\
\(\mathbf{y}\) input array \\
number of elements in first \\
dimension \\
number of elements in second \\
dimension
\end{tabular} \\
\hline Output & \(\mathbf{m}\) & integer & double-precision 2D array \\
result array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{N_Dist}
int status = N_Dist (double \(\mathbf{x}\), double *p);

\section*{Purpose}

Computes the one-sided probability \(\mathbf{p}\) :
\(p=\operatorname{prob}(X \leq x)\)
where X is a random variable from a standard normal distribution.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision & \(-\infty<\mathbf{x}<\infty\) \\
\hline Output & \(\mathbf{p}\) & double-precision & probability \((0<\mathbf{p}<1)\) \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

Note: For computing the two-sided probability \(p 2=\operatorname{prob}(-x \leq X \leq x)\), the following formula can be used.
\(p 2=1.0-2 * \operatorname{prob}(X \leq-x)\)

\section*{Example}
double \(x, p ;\)
\(\mathrm{x}=-123.456\);
N_Dist (x, \&p);

\section*{Neg1D}
int status = Neg1D (double \(\mathbf{x}[\)], int \(\mathbf{n}\), double \(\mathbf{y}[])\);

\section*{Purpose}

Negates the elements of the input array. The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements
\end{tabular} \\
\hline Output & \(\mathbf{y}\) & double-precision array & \begin{tabular}{l}
negated values of the \(\mathbf{x}\) input \\
array
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{NetworkFunctions}
int status \(=\) NetworkFunctions (void *stimulus, void *response, int n, int numFrames, double dt, double magSxy [], double phaseSxy [], double magHf [], double phaseHf [], double coherence [], double impulse [], double *df);

\section*{Purpose}

Computes the single-sided coherence function along with the averaged single-sided cross power spectrum, averaged single-sided frequency response (transfer function), and impulse response, from a 2D array of stimulus signals and a 2D array of response signals.

The network functions are computed as follows.
avg cross power \(=\operatorname{avg}\) of \(\operatorname{Sxy}(f)\)
avg transfer function \(=\operatorname{avg} \operatorname{Sxy}(\mathrm{f}) /\) avg \(\operatorname{Sxx}(\mathrm{f})\)
avg impulse response \(=\) Inverse Real FFT(avg two-sided transfer function)
coherence \(=|\operatorname{averaged} \operatorname{Sxy}(\mathrm{f})|^{2} /[\operatorname{avg} \operatorname{Sxx}(\mathrm{f}) \mathrm{x} \operatorname{avg} \operatorname{Syy}(\mathrm{f})]\)
where
\(\operatorname{Sxy}(\mathrm{f})\) is the two-sided cross power spectrum of x and y
\(\operatorname{Sxx}(\mathrm{f})\) is the two-sided auto power spectrum of x
\(\operatorname{Syy}(\mathrm{f})\) is the two-sided auto power spectrum of y
x is the stimulus signal
\(y\) is the response signal
stimulus is a 2 D array containing a time-domain signal, usually the network stimulus. response is a 2 D array containing a time-domain signal, usually the network response.

Each row in the stimulus array represents one frame of the network stimulus and is associated with one row of the response array, which represents one frame of the network response.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
stimulus \\
response \\
n \\
numFrames \\
dt
\end{tabular} & \begin{tabular}{l}
double- \\
precision 2D \\
array \\
double- \\
precision 2D \\
array \\
integer \\
integer \\
double- \\
precision
\end{tabular} & \begin{tabular}{l}
contains the time-domain signal, usually the network stimulus. The number of rows should be equal to numFrames, and the number of columns should be equal to the \(\mathbf{n}\). The size of this array must be at least: numFrames*n. contains the time-domain signal, usually the network stimulus. The number of rows should be equal to numFrames, and the number of columns should be equal to the \(\mathbf{n}\). The size of this array must be at least: numFrames*n. \\
number of elements in one frame of the input stimulus and response arrays. \\
number of frames (rows) contained in the input stimulus and response arrays. \\
sample period of the time-domain signal, usually in seconds. \\
\(\mathbf{d t}=1 / \mathrm{fs}\), where fs is the sampling frequency of the time-domain signal.
\end{tabular} \\
\hline Output & \begin{tabular}{l}
magSxy \\
phaseSxy \\
magHf \\
phaseHf
\end{tabular} & \begin{tabular}{l}
doubleprecision array \\
doubleprecision array \\
doubleprecision array \\
doubleprecision array
\end{tabular} & \begin{tabular}{l}
averaged single-sided cross power spectrum between the stimulus and response, in volts \(\mathrm{rms}^{2}\) if the input signals are in volts. If the input signals are not in volts, the results are in input signal units RMS squared. This array must be at least \(\mathbf{n} / 2\) elements long. \\
averaged single-sided phase spectrum in radians showing the difference between the phases of the response signal and the stimulus signal. This array must be at least \(\mathbf{n} / 2\) elements long. \\
magnitude of the averaged single-sided transfer function between the stimulus and response signals. This array must be at least \(\mathbf{n} / 2\) elements long. \\
phase, in radians of the averaged single-sided transfer function between the stimulus and response signals.
\end{tabular} \\
\hline
\end{tabular}
(continues)

\section*{Parameters (Continued)}
\(\left.\begin{array}{|l|l|l|l|}\hline \text { coherence } & \begin{array}{l}\text { double- } \\
\text { precision array }\end{array} & \begin{array}{l}\text { averaged single-sided coherence function } \\
\text { spectrum. The coherence function shows the } \\
\text { frequency content of the response due to the } \\
\text { stimulus and measures the validity of the } \\
\text { network frequency response measurement. This } \\
\text { array must be at least n/2 elements long. } \\
\text { contains the impulse response of the network } \\
\text { based on time-domain signals stimulus and } \\
\text { response. Impulse is computed from the } \\
\text { averaged frequency response of the stimulus and } \\
\text { response signals. The size of this array must be } \\
\text { at least } \mathbf{n} .\end{array} \\
\text { points to the frequency interval, in hertz, if } \mathbf{d t} \text { is } \\
\text { in seconds. *df = } 1 /(\mathbf{n} * \mathbf{d t})\end{array}\right\}\)\begin{tabular}{l}
double- \\
precision array
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{NonLinearFit}
```

int status = NonLinearFit (double x [], double y[], double z[], int n,
ModelFun *modelFunction, double a[], int ncoef,
double *MSE);

```

\section*{Purpose}

This function uses the Levenberg-Marquardt algorithm to determine the least squares set of coefficients that best fit the set of input data points \((\mathrm{X}, \mathrm{Y})\) as expressed by a nonlinear function \(y=f(x, a)\) where \(a\) is the set of coefficients. This function also gives the best fit curve \(y=f(x, a)\).

The user needs to pass a pointer to the nonlinear function \(f(\mathbf{x}, \mathbf{a})\) along with a set of initial guess coefficients \(\mathbf{a}\) [ncoef]. NonLinearFit does not always give the correct answer. The correct output sometimes depends on the initial choice of a[ncoef]. It is very important to verify the final result.

The output mse (mean squared error) is computed using the following formula.
\[
m s e=\frac{1}{n} \sum_{i=0}^{n-1}\left[y_{i}-f\left(x_{i}, a\right)\right]^{2}
\]

Parameters
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
y \\
n \\
modelFunction \\
a \\
ncoef
\end{tabular} & \begin{tabular}{l}
double-precision array double-precision array integer \\
ModelFun pointer \\
double-precision array integer
\end{tabular} & \begin{tabular}{l}
The array of \(x\) coordinates of the (\(\mathrm{x}, \mathrm{y}\)) data sets to be fitted. \\
The array of y coordinates of the (\(\mathrm{x}, \mathrm{y}\)) data sets to be fitted. \\
The number of elements in both the x and y arrays. \\
A pointer to the model function, \(\mathrm{f}(\mathrm{x}[\mathrm{i}], \mathrm{a})\), used in the nonlinear fitting algorithm. The model function must be defined as follows: double ModelFunct (double \(x\), double a[], int ncoef); \\
where a[ncoef] are the function coefficients. \\
On input, a[ncoef] gives a set of initial guess coefficients. \\
Number of coefficients.
\end{tabular} \\
\hline Output & \begin{tabular}{l}
z \\
a MSE
\end{tabular} & double-precision array double-precision array double-precision & \begin{tabular}{l}
Best fit array, \(y=f(x, a)\). \\
Best fit coefficients. \\
Mean squared error between \(\mathbf{y}\) and \(\mathbf{z}\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{Normal1D}
int status = Normal1D (double \(\mathbf{x}[\)], int n, double \(\mathbf{y}[\)], double *ave, double *sDev);

\section*{Purpose}

Normalizes a 1D input vector. The output vector is of the following form.
\[
y_{i}=\left(x_{i}-\text { ave }\right) / s D e v
\]
where ave and sDev are the mean and the standard deviation of the input vector. Refer to the StdDev function for the formulas used to find the mean and the standard deviation.

The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input vector \\
number of elements
\end{tabular} \\
\hline Output & \(\mathbf{y}\) & \begin{tabular}{l}
double-precision array \\
ave \\
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
normalized vector \\
mean value of \(\mathbf{x}\) \\
standard deviation of \(\mathbf{x}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate a vector (1D array) with random samples and normalize it. */
double x[200], y[200], ave, sDev;
int n;
n = 200;
Uniform (n, 17, x);
Normal1D (x, n, y, \&ave, \&sDev);

```

\section*{Normal2D}
int status \(=\) Normal2D \(\left(\operatorname{void} * \mathbf{x}\right.\), int \(\mathbf{n}\), int \(\mathbf{m}\), void \(\mathbf{v a}_{\mathbf{y}}\), double *ave, double *SDev \()\);

\section*{Purpose}

Normalizes a 2D input matrix. The output matrix is of the following form.
\[
y_{i, j}=\left(x_{i, j}-a v e\right) / s D e v
\]
where ave and sDev are the mean and the standard deviation of the input matrix. Refer to the StdDev function for the formulas used to find the mean and the standard deviation.

The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision 2D \\
array \\
integer \\
integer
\end{tabular} & input matrix \\
\hline Output & \(\mathbf{n}\) & \begin{tabular}{l}
double-precision 2D \\
array \\
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
size of first dimension \\
size of second dimension
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Normalize a matrix (2D array). */
double x[10][20], y[10][20], ave, sDev;
int n, m;
n = 10;
m = 20;
:
Normal2D (x, n, m, y, \&ave, \&sDev);

```

\section*{PolyEv1D}
int status = PolyEv1D (double \(\mathbf{x}[\)], int \(\mathbf{n}\), double coef [], int \(\mathbf{k}\), double \(\mathbf{y}\) []);

\section*{Purpose}

Performs a polynomial evaluation on the input array. The \(i^{\text {th }}\) element of the output array is obtained using the following formula.
\[
y_{i}=\sum_{j=0}^{k-l} c o e f_{j} * x_{i}{ }^{j}
\]

The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer \\
double-precision array \\
coef \\
\(\mathbf{k}\)
\end{tabular} & \begin{tabular}{l}
integer array \\
number of elements \\
coefficients array \\
number of coefficients
\end{tabular} \\
\hline Output & \(\mathbf{y}\) & double-precision array & polynomially evaluated array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

The order of the polynomial is equal to the number of elements in the coefficients array minus one; that is, if there are \(\mathbf{k}\) elements in the coef array, then order \(=\mathbf{k}-1\).

\section*{Example}
```

/* Generate an array with random numbers, let the coefficients be { 1, 2, 3,
4, 5 } generated by the Ramp function and find the polynomial evaluation of
the array. */
double x[20], y[20], a[5];
double first, last;
int n, k;
n = 20;
k = 5;
first = 1.0;
last = 5.0;
Uniform (n, 17, x);
Ramp (k, first, last, a);
PolyEv1D (x, n, a, k, y);

```

\section*{PolyEv2D}
int status \(=\mathbf{P o l y E v 2 D}(\operatorname{void} * \mathbf{x}\), int \(\mathbf{n}\), int \(\mathbf{m}\), double coef [], int \(\mathbf{k}\), void \(* \mathbf{y})\);

\section*{Purpose}

Performs a polynomial evaluation on a 2D input array. The (\(\left.\mathrm{i}^{\mathrm{th}}, \mathrm{j}^{\text {th }}\right)\) element of the output array is obtained using the following formula.
\[
y_{i, j}=\sum_{p=0}^{k-l} \operatorname{coef}_{p} * x_{i, j}^{p}
\]

The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision 2D array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements in first \\
dimension \\
number of elements in second \\
dimension \\
coefficients array \\
number of coefficients
\end{tabular} \\
\hline Output & \(\mathbf{m}\) & \(\mathbf{y}\) \\
\(\mathbf{k}\)
\end{tabular}\(\quad\)\begin{tabular}{l}
integer \\
double-precision array \\
integer
\end{tabular}\(\quad\) double-precision 2D array \(\quad\) polynomially evaluated array \begin{tabular}{l}
\\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

The order of the polynomial is equal to the number of elements in the coefficients array minus one; that is, if there are \(\mathbf{k}\) elements in the coef array, then order \(=\mathbf{k}-1\).

\section*{Example}
```

/* Perform a polynomial evaluation of a 2D array, let the coefficients be { 1,
2, 3, 4, 5 } generated by the Ramp function and find the polynomial evaluation
of the array. */
double x[5][10], y[5][10], a[5];
double first, last;
int n, m, k;
n = 5;
k = 5;
m = 10;
first = 1.0;
last = 5.0;
Ramp (k, first, last, a);
PolyEv2D (x, n, m, a, k, y);

```

\section*{PolyFit}
```

int status = PolyFit (double x [ ], double y [], int n, int order, double z[],
double coef [], double *mse);

```

\section*{Purpose}

Finds the coefficients that best represent the polynomial fit of the data points \((\mathbf{x}, \mathbf{y})\) using the least squares method. The \(i^{\text {th }}\) element of the output array is obtained by using the following formula.
\[
z_{i}=\sum_{n=0}^{\text {order }} \operatorname{coef}_{n} x_{i}^{n}
\]

The mean squared error (mse) is obtained using the following formula.
\[
m s e=\sum_{i=0}^{n-1}\left|z_{i}-y_{i}\right|^{2} / n
\]
where order is the polynomial order and \(\mathbf{n}\) is the number of sample points.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
y \\
n \\
order
\end{tabular} & double-precision array double-precision array integer integer & \begin{tabular}{l}
x values \\
y values number of sample points polynomial order
\end{tabular} \\
\hline Output & \begin{tabular}{l}
z \\
coef mse
\end{tabular} & double-precision array double-precision array double-precision & best fit polynomial coefficients mean squared error \\
\hline
\end{tabular}

Note: The size of the coefficients array must be order +1 .

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
/* Generate a 10th order polynomial pattern with random coefficients and find the polynomial fit. */ double x[200], y[200], z[200], a[11], coef[11];
```

double first, last, mse;
int n, k, order;
n = 200;
first = 0.0;
last = 1.99E2;
Ramp (n, first, last, x) /* x[i] = i */
k = 11;
Uniform (k, 17, a);
PolyEv1D (x, n, a, k, y); /* polynomial pattern */
/* Find the best polynomial fit */
order = 10;
PolyFit (x, y, n, order, z, coef, \&mse);

```

\section*{PolyInterp}
```

int status = PolyInterp (double x [ ], double y [], int n, double x_val,
double *Interp_Val, double *Error);

```

\section*{Purpose}

Returns the value of the unique polynomial P of degree \(\mathrm{n}-1\) passing through the \(\mathbf{n}\) points \(\left(\mathrm{x}_{\mathrm{i}}, f\left(\mathrm{x}_{\mathrm{i}}\right)\right)\) at \(\mathbf{x}_{-}\)val, along with an estimate of the error in the interpolation, given a set of \(\mathbf{n}\) points \(\left(\mathrm{x}_{\mathrm{i}}, \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)\right)\) in the plane where f is some function, and given a value \(\mathrm{x}_{-}\)val at which f is to be interpolated or extrapolated.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
1D double- \\
precision array \\
1D double- \\
precision array \\
integer \\
double- \\
precision
\end{tabular} & \begin{tabular}{l}
Values at which the function to be interpolated is \\
known. \\
Function values \(\mathrm{f}(\mathrm{x})\) at the known \(\mathbf{x}\) values.
\end{tabular} \\
\hline Output & Interp_Val & \begin{tabular}{l}
Number of points in \(\mathbf{x}\) and in \(\mathbf{y}\). \\
double- \\
precision \\
double- \\
precision
\end{tabular} & Interpolated or extrapolated value at \(\mathbf{x} \mathbf{x}\) val. \\
\hline Error & Estimate of the error in the interpolation. \\
\hline
\end{tabular}

\section*{Using This Function}

All input arrays should be the same size. If the value of \(\mathbf{x} _\mathbf{v a l}\) is in the range of \(\mathbf{x}\), this function performs interpolation. Otherwise, it performs extrapolation. If \(\mathbf{x}\) _val is too far from the range of \(\mathbf{x}\), Error might be large, and it would not produce a satisfactory extrapolation.

\section*{Example}
```

/* Pick points randomly, pick an x in the range of X-values, run a polynomial
through the points, and interpolate at x_val. */
double X[10], Y[10], Interp_Val, Error, x_val, high, low;
int n, i;
n = 10;
WhiteNoise (n, 5.0, 17, X);
WhiteNoise (n, 5.0, 17, Y);
high = X[O];
low = X[O];
for(i=0; i<n; i++) {
if (X[i] > high) high = X[i];
if (X[i] < low) low = X[i];
}
x_val = (high + low)/2.0;
PolyInterp (x, y, n, x_val, \&Interp_Val, \&Error);

```

\section*{PowerFrequencyEstimate}
```

int status = PowerFrequencyEstimate (double autoSpectrum [ ], int n,
double searchFreq,
WindowStruct windowConstants, double df,
int span, double *freqPeak, double *powerPeak);

```

\section*{Purpose}

Computes the estimated power and frequency around a peak in the power spectrum of a timedomain signal. With this function, you can achieve good frequency estimates for measured peaks that lie between frequency lines on the spectrum. This function also makes corrections for the window function you use.

The estimated frequency peak is computed with the following formula.
\[
\text { freqPeak }=\frac{\sum_{j=i-\text { span } / 2}^{i+\text { span } / 2} \text { autoSpectrum }_{j} j * d f}{\sum_{j=i-\text { spanan } / 2} \text { autoSpectrum }_{j}}
\]

The estimated power peak is computed as follows.
\[
\text { powerPeak }=\sum_{j=i \text {-span } / 2}^{i+\text { span } / 2}\left(\text { autoSpectrum }_{j}\right) / \text { enbw }
\]
where
\(i=\) index of the searchfreq,
df is the frequency interval, usually in hertz, as output by the AutoPowerSpectrum function
enbw is windowConstants.enbw as output by the ScaledWindow function.
Parameters
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
autoSpectrum \\
n \\
searchFreq \\
windowConstants
\end{tabular} & \begin{tabular}{l}
double-precision array \\
integer \\
double-precision \\
WindowConst
\end{tabular} & \begin{tabular}{l}
The single-sided power spectrum as output by the AutoPowerSpectrum function. \\
The number of elements in the input AutoSpectrum array. \\
The frequency (usually in hertz) of the frequency around which you want to estimate the frequency and power. If searchFreq is less than zero, or, is not a valid frequency, this function will automatically search for the maximum peak in the autoSpectrum array and estimate the frequency and power around the maximum peak. \\
A structure containing the following useful constants for the selected window: enbw is the equivalent noise bandwidth of the selected window. You can use this value to compute the power in a given frequency span. coherentgain is the peak gain of the window, relative to the peak gain of the Rectangular window. This value is used to normalize peak signal gains to that of the Rectangular window. This structure is output by the ScaledWindow function.
\end{tabular} \\
\hline
\end{tabular}
(continues)

\section*{Parameters (Continued)}
\begin{tabular}{|l|l|l|l|}
\hline df & & double-precision & \begin{tabular}{l}
The frequency interval, in hertz, as output \\
by the following functions: \\
AmpPhaseSpectrum, \\
AutoPowerSpectrum, \\
CrossPowerSpectrum, \\
NetworkFunctions, \\
TransferFunction. \\
The number of frequency lines (bins) \\
around the peak to be included in the peak \\
frequency and power estimation. The \\
power in span/2 frequency lines before \\
the peak frequency line, the peak \\
frequency line itself, and span/2 \\
frequency lines after the peak are included \\
in the estimation. \\
Points to the estimated frequency of the \\
estimated peak power in autospectrum. \\
Points to the estimated peak power in \\
autospectrum.
\end{tabular} \\
freqPeak & integer & double-precision
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{Prod1D}
```

int status = Prod1D (double x [ ], int n, double *prod);

```

\section*{Purpose}

Finds the product of the \(\mathbf{n}\) elements of the input array. The product of the elements is obtained using the following formula.
\[
\text { prod }=\prod_{i=0}^{n-1} x_{i}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements
\end{tabular} \\
\hline Output & prod & double-precision & product of elements \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Pulse}
int status = Pulse (int n, double amp [], int delay, int width, double pulsePattern []);

\section*{Purpose}

Generates an array of numbers representing the pattern of a pulse waveform. The \(\mathrm{i}^{\text {th }}\) element of the output array is obtained using the formula.
\[
\begin{aligned}
& \text { pulsePattern }_{i}= \begin{cases}\mathbf{a m p} & \text { if delay } \leq \mathrm{i}<(\text { delay }+ \text { width }) \\
0 & \text { otherwise }\end{cases} \\
& \text { for } \mathrm{i}=0,1,2, \ldots, \mathrm{n}-1
\end{aligned}
\]

\section*{Parameters}
\(\left.\)\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{n}\) & integer & number of samples \\
double-precision \\
delay \\
width
\end{tabular}\(\quad\)\begin{tabular}{l}
integer \\
integer
\end{tabular}\(\quad\)\begin{tabular}{l}
pulse amplitude \\
pulse delay \\
pulse width
\end{tabular} \right\rvert\, \begin{tabular}{l}
Output
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}
```

Example
/* The following code generates the following pulse pattern
pulsePattern = { 0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 2.0,
0.0, 0.0 }. */
double pulsePattern[10], amp;
int n, delay, width;
n = 10;
delay = 3;
width = 5;
amp = 2.0;
Pulse (n, amp, delay, width, pulsePattern);

```

\section*{PulseParam}
```

int status = PulseParam (double pulsePattern [ ], int n, double *amp, double *amp90, double
*amp50, double *amp10, double *top, double *base, double
*topOvershoot, double *baseOvershoot, int *delay, int *width, int
* riseTime, int *fallTime, double *slewRate);

```

\section*{Purpose}

Analyzes the input array values for a pulse pattern and determines the pulse parameters that best describe the pulse pattern. It is assumed that the input array has a bimodal distribution, a distribution containing two distinct peak values.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & pulsePattern & double-precision array \\
n & integer & \begin{tabular}{l}
input array \\
number of elements
\end{tabular} \\
\hline Output & amp & double-precision & amplitude \\
& amp90 & double-precision & \(90 \%\) amplitude \\
& amp50 & double-precision & \(50 \%\) amplitude \\
& top & double-precision & \(10 \%\) amplitude \\
& base & double-precision & double-precision \\
baseOvershoot & dop value \\
& delay & double-precision & base value \\
width & integer & top overshoot \\
riseTime & integer & base overshoot \\
fallTime & integer & width delay \\
slewRate & double-precision & rise time \\
fall time \\
slew rate \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

The returned parameters are as follows.
top \(=\) upper mode
base = lower mode
amp = top - base
amp90 \(=90 \%\) amplitude
amp50 \(=50 \%\) amplitude
amp10 \(=10 \%\) amplitude
topOvershoot \(=\) maximum value - top
baseOvershoot \(=\) base - minimum value
delay \(=\) rising edge index (\(50 \%\) amplitude)
width \(=\) falling edge index (\(50 \%\) amplitude) - delay
riseTime \(=90 \%\) amplitude index \(-10 \%\) amplitude index on rising edge
fallTime \(=10 \%\) amplitude index \(-90 \%\) amplitude index on falling edge
slewRate \(=(90 \%\) amplitude \(-10 \%\) amplitude \() /\) riseTime
The parameters delay, width, riseTime, and fallTime are integers because the input is a discrete representation of a signal.

\section*{Example}
```

/* Generate a noisy pulse pattern and determine its pulse parameters. */
double x[200], y[200], amp, amp90, amp50, amp10, top, base;
double topOvershoot, baseOvershoot, slewRate, noiseLevel;
int n, delay, width, riseTime, fallTime;
n = 200;
amp = 5.0;
delay = 50;
width = 100;
noiseLevel = 0.5;
Pulse (n, amp, delay, width, x); /* Generate a pulse */
WhiteNoise (n, noiseLevel, 17, y); /* Generate noise signal */
Add1D (x, y, n, x); /* Noisy Pulse */
PulseParam (x, n, \&amp, \&amp90, \&amp50, \&amp10, \&top, \&base, \&topOvershoot,
\&baseOvershoot, \&delay, \&width, \&riseTime, \&fallTime, \&slewRate);

```

\section*{QScale1D}
int status = QScale1D (double \(\mathbf{x}[\)], int \(\mathbf{n}\), double \(\mathbf{y}[\)], double *scale \()\);

\section*{Purpose}

Scales the input array by its maximum absolute value. The it element of the scaled array can be obtained using the following formula.
\[
y_{i}=x_{i} / \text { scale }
\]
where scale is the maximum absolute value in the input array. The constant scale is determined by the function.

The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements
\end{tabular} \\
\hline Output & \begin{tabular}{l}
\(\mathbf{y}\) \\
scale
\end{tabular} & \begin{tabular}{l}
double-precision array \\
double-precision
\end{tabular} & \begin{tabular}{l}
scaled array \\
scaling constant
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{QScale2D}
```

int status = QScale2D (void *x, int n, int m, void *y, double *scale);

```

\section*{Purpose}

Scales a 2D input array by its maximum absolute value. The (\(\mathrm{i}^{\text {th }}, \mathrm{j}^{\text {th }}\)) element of the scaled array can be obtained using the following formula.
\[
y_{i, j}=x_{i, j} / \text { scale }
\]
where scale is the maximum absolute value of the input array. The constant scale is determined by the function.

The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\(\left.\)\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision 2D array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements in first \\
dimension \\
number of elements in second \\
dimension
\end{tabular} \\
\hline Output & \(\mathbf{m}\) & integer \\
scale
\end{tabular}\(\quad\)\begin{tabular}{l}
double-precision 2D array \\
double-precision
\end{tabular}\(\quad\)\begin{tabular}{l}
scaled array \\
scaling constant
\end{tabular} \right\rvert\, \begin{tabular}{l}
(
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Ramp}
int status = Ramp (int n, double first, double last, double rampvals []);

\section*{Purpose}

Generates an output array representing a ramp pattern. The \(i^{\text {th }}\) element of the output array is obtained using the formula.
\[
\text { rampvals }_{\mathrm{i}}=\text { first }+i \Delta x
\]
where \(\Delta \mathrm{x}=(\) last \(-\mathbf{f i r s t}) /(\mathbf{n}-1)\).

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
n \\
first \\
last
\end{tabular} & \begin{tabular}{l}
integer \\
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
number of samples \\
initial ramp value \\
final ramp value
\end{tabular} \\
\hline Output & rampvals & double-precision array & ramp array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

The value of last does not have to be greater than the value of first. If the condition last < first is met, then a negatively sloped ramp pattern is generated.

\section*{Example}
```

/* The following code generates the pattern-rampvals ={ -5.0, -4.0, -3.0, -
2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 }. */
double rampvals[11], first, last;
int n;
n = 11;
first = -5.0;
last = 5.0;
Ramp (n, first, last, rampvals);

```

\section*{RatInterp}
```

int status = RatInterp (double x [ ], double y [], int n, double x_val,
double *Interp_Val, double *Error);

```

\section*{Purpose}

Returns the value of a particular rational function \(\mathrm{P}(x) / \mathrm{Q}(x)\) passing through the n points \(\left(x_{i}, f\left(x_{i}\right)\right)\) at \(\mathbf{x} _\)val,
given a set of n points \(\left(x_{i}, f\left(x_{i}\right)\right)\) in the plane where f is some function, and
a value \(\mathbf{x}\) _val at which f is to be interpolated; and
where P and Q are polynomials, and \(n\) is the number of elements in \(\mathbf{x}\).

The function \(\mathrm{P}(x) / \mathrm{Q}(x)\) is the unique rational function that passes through the given points and satisfies the following conditions.

If \(\mathbf{n}\) is odd,
\[
\operatorname{deg}(P)=\operatorname{deg}(Q)=(n-1) / 2,
\]
if \(\mathbf{n}\) is even,
\[
\begin{aligned}
& \operatorname{deg}(Q)=n / 2 \\
& \operatorname{deg}(P)=n / 2-1
\end{aligned}
\]
where \(\operatorname{deg}()\) is the order of the polynomial function.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
lD double- \\
precision array \\
1D double- \\
precision array \\
integer \\
double- \\
precision
\end{tabular} & \begin{tabular}{l}
Values at which the function to be interpolated is \\
known. \\
Function values at the known \(\mathbf{x}\) values.
\end{tabular} \\
\hline n & \begin{tabular}{l}
Number of points in \(\mathbf{x}\) and in \(\mathbf{y}\). \\
Value at which \(f\) is to be interpolated or \\
extrapolated.
\end{tabular} \\
\hline Output & Interp_Val & \begin{tabular}{l}
double- \\
precision \\
double- \\
precision
\end{tabular} & Interpolated value at \(\mathbf{x} _\)val. \\
Error & Estimate of the error in the interpolation. \\
\hline
\end{tabular}

\section*{Using This Function}

All input arrays should be the same size. If the value of \(\mathbf{x} _\mathbf{v a l}\) is in the range of \(\mathbf{x}\), this function performs interpolation. Otherwise, it performs extrapolation. If \(\mathbf{x}\) _val is too far from the range of \(\mathbf{x}\), Error might be large, and it would not produce a satisfactory extrapolation.

\section*{Example}
```

/* Pick points randomly, pick an x in the range of x-values, run a rational
function through the points and interpolate at x_val. */
double x[10], y[10], Interp_Val, Error, x_val, high, low;
int n, i;
n = 10;
WhiteNoise (n, 5.0, 17, x);
WhiteNoise (n, 5.0, 17, y);
high = x[0];
low = x[0];
for(i=0; i<n; i++) {
if (x[i] > high) high = x[i];
if (x[i] < low) low = x[i];
}
x_val = (high + low)/2.0;
RatInterp (x, y, n, x_val, \&Interp_Val, \&Error);

```

\section*{ReFFT}
int status \(=\operatorname{ReFFT}(\) double \(\mathbf{x}[\)], double \(\mathbf{y}[]\), int \(\mathbf{n})\);

\section*{Purpose}

Computes the Fast Fourier Transform of a real input array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
array to be transformed \\
number of elements
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
double-precision array
\end{tabular} & \begin{tabular}{l}
real part of Fourier Transform \\
imaginary part of Fourier \\
Transform
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

The number of elements (\(\mathbf{n}\)) must be a power of two. The operation is done in place and the input array \(\mathbf{x}\) is overwritten. The output array \(\mathbf{y}\) must be at least the same size as the input array \(\mathbf{x}\) because performing an FFT on a real array results in a complex sequence.

\section*{Example}
```

/* Generate an array with random numbers and compute its Fast Fourier
Transform. */
double x[256], y[256];
int n;
n = 256;
Uniform (n, x);
ReFFT (x, y, n);

```

\section*{ReInvFFT}
int status = ReInvFFT (double \(\mathbf{x}[\)], double \(\mathbf{y}[\)], int \(\mathbf{n}\));

\section*{Purpose}

Computes the inverse Fast Fourier Transform of a complex sequence that results in a real output array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
real part to be transformed \\
imaginary part to be transformed \\
number of elements
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision array & real inverse Fourier Transform \\
\hline
\end{tabular}

\section*{Parameter Discussion}

The number of elements (\(\mathbf{n}\)) must be a power of 2 . The operation is done in place, and the input array \(\mathbf{x}\) is overwritten. The \(\mathbf{y}\) array is unchanged.

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}
```

Example
/* Generate an array with random numbers. */
/* Compute it's real inverse Fast Fourier Transform. */
double x[256], y[256];
int n;
n = 256;
Uniform (n, 17, x);
Uniform (n, 17, y);
ReInvFFT (x, y, n);

```

\section*{ResetIIRFilter}
int status = ResetIIRFilter (IIRFilterPtr filterInformation);

\section*{Purpose}

Sets the reset flag in the filterInfo filter structure, so that the internal filter state information is reset to zero before the next cascade IIR filtering operation.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & filterInformation & IIRFilterPtr & \begin{tabular}{l}
filterInformation is the pointer to the filter \\
structure which contains the filter \\
coefficients and the internal filter \\
information.
\end{tabular} \\
Please refer to the function \\
AllocIIRFilterPtr for further \\
information about the filter structure.
\end{tabular},

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
Refer to error codes in \\
Appendix A.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/*How to use function ResetIIRFilter */
double fs, fl, fh, x[256], y[256];
int type,order,n;
IIRFilterPtr filterInfo;
n = 256;
fs = 1000.0;
fl = 200.0;
order = 5;
type = 0; /* lowpass */
filterInfo = AllocIIRFilterPtr(type,order);
if(filterInfo!=0) {
Bw_CascadeCoef(fs,fl,fh, filterInfo);
Uniform(n,17,x);
IIRCascadeFiltering(x,n,filterInfo,y);
Uniform(n,20,x);
ResetIIRFilter(filterInfo); /* reset the filter for a new data set. */
IIRCascadeFiltering(x,n,filterInfo,y);
FreeIIRFilterPtr(filterInfo);
}

```

\section*{Reverse}
int status = Reverse (double \(\mathbf{x}[\)], int \(\mathbf{n}\), double \(\mathbf{y}[\)] ;

\section*{Purpose}

Reverses the order of the elements of the input array using the following formula.
\[
y_{i}=x_{n-i-1} \quad \text { for } \mathrm{i}=0,1, \ldots, \mathrm{n}-1
\]

The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements
\end{tabular} \\
\hline Output & \(\mathbf{y}\) & double-precision array & reversed array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{RMS}
```

int status = RMS (double x [ ], int n, double *rmsval);

```

\section*{Purpose}

Computes the root mean squared (rms) value of the input array. The formula used to find the rms value is as follows.
\[
\text { rmsval }=\sqrt{\frac{1}{n} \sum_{i=0}^{n-1} x_{i}^{2}}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements in \(\mathbf{x}\)
\end{tabular} \\
\hline Output & rmsval & double-precision & root mean squared value \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{SawtoothWave}
int status = SawtoothWave (int n, double amp, double f, double *phase, double \(\mathbf{x}[\)]);

\section*{Purpose}

Generates an array containing a sawtooth wave. The output array \(\mathbf{x}\) is generated according to the following formula.
\[
x_{i}=a m p * \operatorname{sawtooth}(* \text { phase }+f * 360 * i)
\]
where
sawtooth \((p)= \begin{cases}\frac{p \text { modulo } 360}{180.0} & 0 \leq p \text { modulo } 360<180 \\ \frac{p \text { modulo } 360}{180.0}-2.0 & 180 \leq p \text { modulo } 360<360\end{cases}\)
This function can be used to simulate a continuous acquisition from an sawtooth wave function generator. The unit of the input *phase is in degrees, and *phase is set to
(*phase \(+\mathbf{f}^{*} 360 * \mathbf{n}\)) modulo 360 before returning.
Parameters
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
n \\
amp \\
f
\end{tabular} & \begin{tabular}{l}
integer \\
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
number of samples to generate. \\
amplitude of the resulting signal. \\
frequency of the resulting signal in \\
normalized units of cycles/sample. \\
phase to the initial phase, in degrees, \\
of the generated signal.
\end{tabular} \\
\hline Output & phase & double-precision & \begin{tabular}{l}
upon completion of this function, \\
phase points to the phase of the next \\
portion of the signal. Use this \\
parameter in the next call to this \\
function to simulate a continuous \\
function generator.
\end{tabular} \\
contains the generated sawtooth wave \\
signal.
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{Scale1D}
```

int status = Scale1D (double x [ ], int n, double y [ ], double *offset,
double *scale);

```

\section*{Purpose}

Scales the input array. The scaled output array is in the range [-1:1]. The \(\mathrm{i}^{\text {th }}\) element of the scaled array can be obtained using the following formulas.
\[
\begin{aligned}
& y_{i}=\left(x_{i}-\text { offset }\right) / \text { scale } \\
& \text { scale }=(\text { max }-\min) / 2 \\
& \text { offset }=\text { min }+ \text { scale }
\end{aligned}
\]
where max and min are the maximum and minimum values in the input array, respectively. The function determines the values of the constants scale and offset. The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements
\end{tabular} \\
\hline Output & \begin{tabular}{l}
\(\mathbf{y}\) \\
offset \\
scale
\end{tabular} & \begin{tabular}{l}
double-precision array \\
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
scaled array \\
offsetting constant \\
scaling constant
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Scale2D}
int status = Scale2D (void *x, int n, int m, void *y, double *offset, double *scale);

\section*{Purpose}

Scales the input array. The scaled output array is in the range \([-1: 1]\). The \(\mathrm{i}^{\text {th }}, \mathrm{j}^{\text {th }}\) element of the scaled array can be obtained using the following formulas.
\[
\begin{aligned}
& y_{i, j}=\left(x_{i, j}-\text { offset }\right) / \text { scale } \\
& \text { scale }=(\text { max }- \text { min }) / 2 \\
& \text { offset }=\text { min }+ \text { scale }
\end{aligned}
\]
where max and min are the maximum and minimum values in the input array, respectively. The function determines the values of the constants scale and offset.

The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\(\left.\)\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision 2D array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements in first \\
dimension \\
number of elements in second \\
dimension
\end{tabular} \\
\hline Output & \(\mathbf{m}\) & \begin{tabular}{l}
\(\mathbf{y}\) \\
offset \\
scale
\end{tabular} & \begin{tabular}{l}
double-precision 2D array \\
double-precision \\
double-precision
\end{tabular}
\end{tabular} \begin{tabular}{l}
scaled array \\
offsetting constant \\
scaling constant
\end{tabular} \right\rvert\, \begin{tabular}{l}
\\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{ScaledWindow}
```

int status = ScaledWindow (double x [ ], int n, int windowType,
WindowConst *windowConstants);

```

\section*{Purpose}

Applies a scaled window to the time-domain signal and outputs window constants for further analysis.

The windowed time-domain signal is scaled so that when the power or amplitude spectrum of the windowed waveform is computed, all windows provide the same level within the accuracy constraints of the window. This function also returns important window constants for the selected window. These constants are useful when you use functions that perform computations on the power spectrum, such as the PowerFrequencyEstimate.
windowType has the following values.
0: Uniform
1: Hanning
2: Hamming
3: Blackman-Harris
4: Exact Blackman
5: Blackman
6: Flattop
7: Four Term Blackman-Harris
8: Seven Term Blackman-Harris
\(\mathbf{x}\) is the time-domain signal multiplied by the scaled window.
windowConstants is a structure containing the following important constants for the selected window. windowStruct is defined by the following C typedef statement.
```

typedef struct {
double enbw;
double coherentgain;
} WindowConst;

```
enbw is the equivalent noise bandwidth of the selected window. You can use this value to compute the power in a given frequency span.
coherentgain is the peak gain of the window, relative to the peak gain of the Rectangular window. You can use this value to normalize peak signal gains to that of the Rectangular window.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
n windowType
\end{tabular} & \begin{tabular}{l}
double-precision 1D array integer \\
integer
\end{tabular} & \begin{tabular}{l}
Input array containing time-domain signal to be windowed. \\
The number of elements in the input array. \\
The type of the window function to apply to the input signal.
\end{tabular} \\
\hline Output & x windowConstants & double-precision array WindowConst pointer & \begin{tabular}{l}
The windowed version of \(\mathbf{x}\). \\
A structure containing the following useful constants for the selected window: enbw is the equivalent noise bandwidth of the selected window. You can use this value to compute the power in a given frequency span. coherentgain is the peak gain of the window, relative to the peak gain of the Uniform window. This value is used to normalize peak signal gains to that of the Uniform window.
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{Set1D}
int status \(=\operatorname{Set} 1 \mathrm{D}\) (double \(\mathbf{x}[\)], int \(\mathbf{n}\), double \(\mathbf{a}\));

\section*{Purpose}

Sets the elements of the \(\mathbf{x}\) array to a constant value.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{n}\) \\
\(\mathbf{a}\)
\end{tabular} & \begin{tabular}{l}
integer \\
double-precision
\end{tabular} & \begin{tabular}{l}
number of elements in \(\mathbf{x}\) \\
constant value
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision array & \begin{tabular}{l}
result array (set to the value \\
of \(\mathbf{a})\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Shift}
int status = Shift (double \(\mathbf{x}[]\), int \(\mathbf{n}\), int shifts, double \(\mathbf{y}[\)] ;

\section*{Purpose}

Shifts the elements of the input array using the following formula.
\[
y_{i}=x_{i-s h i f s}
\]

The number of shifts specified can be in the positive (right) or negative (left) direction.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer \\
n \\
shifts
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements in \(\mathbf{x}\) \\
number of shifts
\end{tabular} \\
\hline Output & \(\mathbf{y}\) & double-precision array & shifted array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

This is not a circular shift. Shifted values are not retained, and the trailing portion of the shift is replaced with zero. The operation cannot be done in place; that is, the input and output arrays cannot be the same.

\section*{Example}
```

/* Generate an array with random numbers and shift it by 20 samples. */
double x[200], y[200];
int n;
int shifts;
n = 200;

```
```

shifts = 20;
Uniform (n, 17, x);
Shift (x, n, shifts, y);

```

\section*{Sinc}
int status = Sinc (int n, double amp, double delay, double dt, double \(\mathbf{x}[\)] ;

\section*{Purpose}

Generates an array containing a sinc pattern. The output array \(\mathbf{x}\) is generated according to the following formula.
\[
x_{i}=a m p * \operatorname{Sinc}(i * d t-\text { delay })
\]
where
\[
\operatorname{Sinc}(x)=\frac{\sin (\pi x)}{\pi x}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
n \\
amp \\
delay
\end{tabular} & \begin{tabular}{l}
integer \\
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
The number of samples to generate. \\
The amplitude of the resulting signal. \\
Shifts the peak value of the sinc pattern \\
to the index. \\
The sampling interval. It is inversely \\
proportional to the width of the main \\
lobe of the generated sinc pattern.
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision & Contains the generated sinc pattern. \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}
\(\qquad\)

\section*{SinePattern}
int status = SinePattern (int n, double amp, double phase, double cycles, double sine []);

\section*{Purpose}

Generates an output array with a sinusoidal pattern. The \(i^{\text {th }}\) element of the double-precision output array is obtained using the following formula.
\[
\operatorname{sine}_{i}=\text { amp } * \sin (2 \pi * i * \text { cycles } / n+\pi * \text { phase } / 180)
\]

The phase value is assumed to be in degrees and not in radians.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
n \\
amp \\
phase \\
cycles
\end{tabular} & \begin{tabular}{l}
integer \\
double-precision double-precision double-precision
\end{tabular} & number of samples amplitude phase (in degrees) number of cycles \\
\hline Output & sine & double-precision array & sinusoidal pattern \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix \(A\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
/* The following code generates a cosinusoidal pattern. */
double \(x[8], ~ a m p, ~ p h a s e, ~ c y c l e s ; ~\)
int \(n\);
\(\mathrm{n}=8\);
amp \(=1.0\);
phase \(=90.0\);
cycles \(=1.5\);
SinePattern (n, amp, phase, cycles, x);

\section*{SineWave}
int status = SineWave (int n, double amp, double f, double *phase, double \(\mathbf{x}[\)]);

\section*{Purpose}

Generates an array containing a sine wave. The output array \(\mathbf{x}\) is generated according to the following formula.
\[
\mathbf{x}_{\mathrm{i}}=\mathbf{a m p} * \sin \left(\mathrm{ph}_{\mathrm{i}}\right)
\]
where
\[
p h_{i}=\frac{\pi}{180}(* \text { phase }+f * 360.0 * i)
\]
where
\[
f=\text { frequency, cycles/sample }
\]

This function can be used to simulate a continuous acquisition from a sine wave function generator. The unit of the input phase is in degrees, and phase is set to (\({ }^{*}\) phase \(+\mathbf{f} * 360 * \mathbf{n}\)) modulo 360 before returning.

\section*{Parameters}
\(\left.\)\begin{tabular}{|l|l|l|l|}
\hline Input & n & amp & integer \\
double-precision \\
double-precision
\end{tabular}\(\quad\)\begin{tabular}{l}
The number of samples to generate. \\
The amplitude of the resulting signal. \\
The frequency of the resulting signal in \\
normalized units of cycles/sample. \\
Points to the initial phase, in degrees, \\
of the generated signal.
\end{tabular} \right\rvert\, \begin{tabular}{l}
Output \\
phase \\
double-precision pointer \\
\hline double-precision \\
Upon completion of this function, \\
phase points to the phase of the next \\
portion of the signal. Use this \\
parameter in the next call to this \\
function to simulate a continuous \\
function generator. \\
Contains the generated sine wave \\
signal.
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{Sort}
int status = Sort (double \(\mathbf{x}[\)] , int \(\mathbf{n}\), int direction, double \(\mathbf{y}[\)] ;

\section*{Purpose}

Sorts the \(\mathbf{x}\) input array in ascending or descending order. The operation can be performed in place; that is, \(\mathbf{x}\) and \(\mathbf{y}\) can be the same array.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements to be \\
sorted
\end{tabular} \\
direction & integer & \begin{tabular}{l}
zero: ascending \\
nonzero: descending
\end{tabular} \\
\hline Output & \(\mathbf{y}\) & double-precision array & sorted array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate a random array of numbers and sort them in ascending order. */
double x[200], y[200];
int n;
int dir;
n = 200;
dir = 0;
Uniform (n, 17, x);
Sort (x, n, dir, y);

```

\section*{Spectrum}
int status = Spectrum (double \(\mathbf{x}[\)], int \(\mathbf{n})\);

\section*{Purpose}

Computes the power spectrum of the input real data. The operation is done in place and the input array \(\mathbf{x}\) is overwritten. The following formula is used to obtain the power spectrum.

Power Spectrum \(=|F F T\{X\}|^{2} / n^{2}\)
The number of elements (\(\mathbf{n}\)) must be a power of two.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision array & power spectrum \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate an array with random numbers and compute its power spectrum. */
double x[256];
int n;
n = 256;
Uniform (n, 17, x);
Spectrum (x, n);

```

\section*{SpectrumUnitConversion}
int status \(=\) SpectrumUnitConversion (double spectrum [] , int n, int type, int scalingMode, int displayUnits, double df, WindowConst windowConstants, double convertedSpectrum [], char unitString []);

\section*{Purpose}

Converts the input spectrum (power, amplitude, or gain) to alternate formats including Log (dB or dBm) and spectral density.
spectrum is the input array containing a spectrum of the type specified by the type selector.
```

type $=0$ Power $\left(V_{r m s}{ }^{2}\right)$-computed by AutoSpectrum ()
type $=1$ Amplitude (Vrms)-computed by AmpPhaseSpectrum ()
type $=2$ Gain (amplitude ratio)-computed by TransferFunction ()

```

The unitString is a character array that specifies the base unit of the time domain waveform from which the input spectrum is computed. The signal unit is often set to "V" (volts). The size of unitString must be at least 12+ size of (input unitString).

The scalingMode control has three selections for the output unit type.
```

scalingMode = 0 Linear
scalingMode = 1 dB
scalingMode =2 dBm

```
displayUnit has the following selections for the display unit (assuming V for the base unit).
0: Vrms (volts rms)
1: Vpk (volts peak)
2: \(\mathrm{Vrms}^{2}\) (volts squared rms)
3: \(\mathrm{Vpk}^{2}\) (volts squared peak)
4: Vrms \(/ \sqrt{\mathrm{Hz}}\) (volts rms per root Hz)
5: \(\mathrm{Vpk} / \sqrt{\mathrm{Hz}}\) (volts peak per root Hz)
6: \(\mathrm{Vrms}^{2} / \mathrm{Hz}\) (volts squared rms per Hz)
7: \(\mathrm{Vpk}^{2} / \mathrm{Hz}\) (volts squared peak per Hz)

The last four selections are amplitude spectral density \((4,5)\) and power spectral density \((6,7)\). The structure windowConstants contains constants for the selected window (from the ScaledWindow function). You need this input only when you use the spectral density output formats (the last four display unit selections).

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
spectrum \\
n \\
type \\
scalingMode \\
displayUnits
\end{tabular} & \begin{tabular}{l}
double-precision array \\
integer \\
integer \\
integer \\
integer
\end{tabular} & \begin{tabular}{l}
The input array containing a spectrum of the type specified by the spectrum selector. It should be a power, amplitude, or gain spectrum. \\
The number of elements in the input spectrum. \\
The type of the input spectrum. Valid values of Type are: \\
0: Power (Vrms \({ }^{2}\)) \\
1: Amplitude (Vrms) \\
2: Gain (amplitude ratio) \\
The type of the scaling of the output spectrum. \\
Valid values of Scaling Mode are: \\
0 : Linear \\
1: dB \\
2: dBm \\
The unit of the output spectrum, (assuming "V" for the input Unit String) Valid values of displayUnits are: \\
0: Vrms (volts rms) \\
1: \(\operatorname{Vpk}\) (volts peak) \\
2: \(V_{r m s}{ }^{2}\) (volts square rms) \\
3: \(V p k^{2}\) (volts squared peak) \\
4: \(\operatorname{Vrms} / \sqrt{\mathrm{Hz}}\) (volts rms per square root of Hz) \\
5: \(\mathrm{Vpk} / \sqrt{\mathrm{Hz}}\) (volts peak per square root of Hz) \\
6: \(\mathrm{Vrms}^{2} / \mathrm{Hz}\) (volts squared rms per \(\mathrm{Hz})\) \\
7: \(V p k^{2} / H z\) (volts squared peak per \(\mathrm{Hz})\)
\end{tabular} \\
\hline
\end{tabular}
(continues)

\section*{Parameters (Continued)}
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
df \\
windowConstants \\
unitString
\end{tabular} & \begin{tabular}{l}
double-precision \\
WindowConst pointer \\
string
\end{tabular} & \begin{tabular}{l}
The frequency interval, in hertz, as output by the following functions: \\
AmpPhaseSpectrum, AutoPowerSpectrum, CrossPowerSpectrum, NetworkFunctions, TransferFunction \\
A structure containing the following useful constants for the selected window: enbw is the equivalent noise bandwidth of the selected window. You can use this value to compute the power in a given frequency span. coherentgain is the peak gain of the window, relative to the peak gain of the Rectangular window. This value is used normalize peak signal gains to that of the Rectangular window. This structure is output by the ScaledWindow function. \\
A string that contains, on input, the base unit of the analyzed signal (V for a voltage signal).
\end{tabular} \\
\hline Output & \begin{tabular}{l}
convertedSpectrum \\
unitString
\end{tabular} & \begin{tabular}{l}
double-precision array \\
string
\end{tabular} & \begin{tabular}{l}
The input spectrum (power, amplitude, or gain) converted to alternate formats including \(\log (\mathrm{dB}\) or dBm\()\) and spectral density. The size of this array must be at n. \\
Contains, upon completion of this function, the unit of the output Converted Spectrum. The size of this string must be at least the (size of the input unitString) +12 .
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{SpInterp}
```

int status = SpInterp (double x [ ], double y [], double y2 [], int n, double
x_val, double *Interp_Val);

```

\section*{Purpose}

Performs a cubic spline interpolation of the function f at a value \(\mathbf{x}_{\mathbf{\prime}}\) val (where \(\mathbf{x}_{-}\)val is in the range of \(x_{i}\) 's), given a tabulated function of the form \(y_{i}=\mathrm{f}\left(x_{i}\right)\) for \(i=0,1, \ldots, n-1\), with \(x_{i}<x_{i+1}\), and given the second derivatives that specify the interpolant at the \(\mathbf{n}\) nodes of \(\mathbf{x}\) (these are supplied by the Spline procedure). If \(\mathbf{x} _\)val falls in the interval \(\left[x_{i}, x_{i+1}\right]\), then the interpolated value is as follows.
\[
\text { Interp_Val }=\mathrm{A}_{i}+\mathrm{B} y_{i+1}+\mathrm{C}^{\prime \prime}{ }_{i}+\mathrm{D} y^{\prime \prime}{ }_{i+1}
\]
where
\[
\begin{aligned}
& A=\frac{\mathrm{x}_{\mathrm{i}+1}-\mathrm{x}_{-} \mathrm{val}}{\mathrm{x}_{\mathrm{i}+1}-\mathrm{x}_{\mathrm{i}}} \\
& B=1-A \\
& C=\left(A^{3}-A\right)\left(x_{i+1}-x_{i}\right)^{2} / 6 \\
& D=\left(B^{3}-B\right)\left(x_{i+1}-x_{i}\right)^{2} / 6
\end{aligned}
\]

\section*{Parameters}
\(\left.\left.\begin{array}{|l|l|l|l|}\hline \text { Input } & \mathbf{x} & \text { double-precision array } & \begin{array}{l}\text { the } x \text { values at which } f \text { is known. } \\
\text { These values must be in ascending } \\
\text { order. } \\
\text { y2 }\end{array} \\
\text { n } & \text { n_vanction values } y_{i}=f\left(x_{i}\right) \\
\text { double-precision array } \\
\text { double-precision array } \\
\text { the array of second derivatives } \\
\text { which specify the interpolant } \\
\text { the number of elements in } \mathbf{x}, \mathbf{y}, \text { and } \\
\mathbf{y 2}\end{array}\right\} \begin{array}{l}\text { integer } \\
\text { dhe } x \text { value at which } f \text { is to be } \\
\text { interpolated }\end{array}\right]\)\begin{tabular}{l}
Output \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}
```

Example
/* Choose ascending X-values. Pick corresponding Y-values randomly. Set
boundary conditions and specify the cubic spline interpolant that is run
through the points. Pick an x in range of X's and interpolate. Pick another
x and interpolate again. */
double X[100], Y[100], Y2[100], B1, B2, x_val;
int n, i;
n = 100;
for(i=0; i<n; i++)
X[i] = i * 0.1;
WhiteNoise (n, 5.0, 17, Y);
b1=0.0;
b2=0.0;
Spline (X, Y, n, b1, b2, Y2);
x_val = 0.331;
SpInterp (X, Y, Y2, n, x_val, \&Interp_Val);
x_val = 0.7698;
SpInterp (X, Y, Y2, n, x_val, \&Interp_Val);

```

\section*{Spline}
int status = Spline (double \(\mathbf{x}\) [], double y [], int n, double b1, double b2, double \(\mathbf{y} 2\) []);

\section*{Purpose}

Calculates the second derivatives used by the cubic spline interpolant (the continuously differentiable curve to be run though the \(\mathbf{n}\) points \(\left(x_{i}, y_{i}\right)\)), given a tabulated function of the form \(y_{i}=f\left(x_{i}\right)\) for \(i=0,1, \ldots, n-1\), with \(x_{i}<x_{i}+1\), and given the boundary conditions \(\mathbf{b 1}\) and \(\mathbf{b 2}\) such that the interpolant's second derivative matches the specified values at \(x_{0}\) and \(x_{n-1}\).

This array can be used with the SpInterp function to calculate an interpolation value.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & double-precision array & \begin{tabular}{l}
the \(x\) values at which \(f\) is known; these \\
values must be in ascending order \\
the function values \(y_{i}=f\left(x_{i}\right)\)
\end{tabular} \\
& \(\mathbf{y}\) & \begin{tabular}{l}
double-precision array \\
integer \\
b1 \\
double-precision \\
double-precision
\end{tabular} & the number of elements in \(\mathbf{x}, \mathbf{y}\), and \(\mathbf{y 2}\) \\
the first boundary condition \(\left(x^{\prime \prime} 0\right)\) \\
the second boundary condition \(\left(x^{\prime \prime} n-1\right)\)
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Choose ascending X-values. Pick corresponding Y-values randomly. Set
boundary conditions and specify the cubic spline interpolant that is run
through the points. */
double X[100], Y[100], Y2[100], b1, b2;
int n, i;
n = 100;
for(i=0; i<n; i++)
X[i] = i * 0.1;
WhiteNoise (n, 5.0, 17, Y);
b1=0.0;
b2=0.0;
Spline (X, Y, n, b1, b2, Y2);

```

\section*{SquareWave}
int status = SquareWave (int n, double amp, double f, double *phase, double dutyCycle, double \(\mathbf{x}[]\));

\section*{Purpose}

Generates an array containing a square wave. The output array \(\mathbf{x}\) is generated according to the following formula.
\[
x_{i}=\text { amp } * \text { square }(* \text { phase }+f+360.0 * i)
\]
where
\(\mathbf{f}=\) frequency, cycles/sample
\[
\text { square }(\mathrm{p})= \begin{cases}1.0 & 0 \leq \mathrm{p} \text { modulo } 360<\frac{\text { duty }}{100} * 360 \\ -1.0 & \frac{\text { duty }}{100} * 360 \leq \mathrm{p} \text { modulo } 360<360\end{cases}
\]

This function can be used to simulate a continuous acquisition from a square wave function generator. The unit of the input *phase is in degrees, and *phase is set to (\(* \mathbf{p h a s e}+\mathbf{f} * 360 * \mathbf{n}\)) modulo 360 before returning.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
n \\
amp \\
f
\end{tabular} & \begin{tabular}{l}
integer \\
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
The number of samples to generate. \\
The amplitude of the resulting signal. \\
The frequency of the resulting signal \\
in normalized units of cycles/sample. \\
Contains the duty cycle, in percent, of \\
the generated square wave signal. \\
Points to the initial phase, in degrees, \\
of the generated signal.
\end{tabular} \\
\hline Output & phase & double-precision & double-precision \\
\begin{tabular}{l}
donsion
\end{tabular} \\
\begin{tabular}{l}
Upon completion of this function, \\
phase points to the phase of the next \\
portion of the signal. Use this \\
parameter in the next call to this \\
function to simulate a continuous \\
function generator. \\
Contains the generated square wave \\
signal.
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{StdDev}
int status \(=\operatorname{StdDev}(\) double \(\mathbf{x}[\)], int \(\mathbf{n}\), double *meanval, double *sDev);

\section*{Purpose}

Computes the standard deviation and the mean (average) values of the input array. The formulas used to find the mean and the standard deviation are as follows.
\[
\begin{aligned}
& \text { meanval }=\sum_{i=0}^{n-1} x_{i} / n \\
& s \text { Dev }=\sqrt{\sum_{i=0}^{n-1}\left[x_{i}-\text { meanval }\right]^{2} / n}
\end{aligned}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements in \(\mathbf{x}\)
\end{tabular} \\
\hline Output & \begin{tabular}{l}
meanval \\
sDev
\end{tabular} & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
mean value \\
standard deviation
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Sub1D}
int status = Sub1D (double \(\mathbf{x}[]\), double \(\mathbf{y}[\)], int \(\mathbf{n}\), double \(\mathbf{z}[\)] ;

\section*{Purpose}

Subtracts two 1D arrays. The \(\mathrm{i}^{\text {th }}\) element of the output array can be obtained using the following formula.
\[
z_{i}=x_{i}-y_{i}
\]

The operation can be performed in place; that is, \(\mathbf{z}\) can be either \(\mathbf{x}\) or \(\mathbf{y}\).

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
\(\mathbf{x}\) input array \\
\(\mathbf{n}\) input array \\
number of elements to be \\
subtracted
\end{tabular} \\
\hline Output & \(\mathbf{z}\) & double-precision array & result array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Sub2D}
int status \(=\operatorname{Sub2D}(\operatorname{void} * \mathbf{x}, \operatorname{void} * \mathbf{y}\), int \(\mathbf{n}\), int \(\mathbf{m}\), void \(* \mathbf{z})\);

\section*{Purpose}

Subtracts two 2D arrays. The \(\left(\mathrm{i}^{\text {ih }}, \mathrm{j}^{\text {th }}\right)\) element of the output array is obtained using the formula.
\[
z_{i, j}=x_{i, j}-y_{i, j}
\]

The operation can be performed in place; that is, \(\mathbf{z}\) can be either \(\mathbf{x}\) or \(\mathbf{y}\).

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision 2D array \\
double-precision 2D array \\
integer
\end{tabular} & \begin{tabular}{l}
\(\mathbf{x}\) input array \\
\(\mathbf{y}\) input array \\
number of elements in first \\
dimension \\
number of elements in second \\
dimension
\end{tabular} \\
\hline Output & \(\mathbf{m}\) & integer & double-precision 2D array \\
result array \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Subset1D}
int status = Subset1D (double \(\mathbf{x}[]\), int \(\mathbf{n}\), int index, int length, double \(\mathbf{y}[\)] ;

\section*{Purpose}

Extracts a subset of the \(\mathbf{x}\) input array containing the number of elements specified by the length and starting at the index element.

Parameters
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer \\
index \\
length \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements in \(\mathbf{x}\)
\end{tabular} \\
initial index for the subset \\
number of elements copied to the \\
subset
\end{tabular}\(|\)\begin{tabular}{lll}
Output & \(\mathbf{y}\) & double-precision array
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* The following example generates y ={0.0, 1.0, 2.0, 3.0 }*/
double x[11], y[4], first, last;
int n, index, length;
n = 11;
index = 5;
length = 4;
first = -5.0;
last = 5.0;
Ramp (n, first, last, x);
Subset1D (x, n, index, length, y);

```

\section*{Sum1D}
int status = Sum1D (double \(\mathbf{x}[\)], int \(\mathbf{n}\), double *sum \()\);

\section*{Purpose}

Finds the sum of the elements of the input array. The formula used to obtain the sum of the elements is as follows.
\[
\operatorname{sum}=\sum_{i=0}^{n-1} x_{i}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements
\end{tabular} \\
\hline Output & sum & double-precision & sum of elements \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* Generate a random array and sum the elements. */
double x[20], sum;
int n;
n = 20;
Uniform (n, 17, x);
Sum1D (x, n, \&sum);

```

\section*{Sum2D}
int status \(=\) Sum2D \((\operatorname{void} * \mathbf{x}\), int \(\mathbf{n}\), int \(\mathbf{m}\), double *sum \()\);

\section*{Purpose}

Finds the sum of the elements in the input 2D array. The sum is obtained using the following formula.
\(\operatorname{sum}=\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} x_{i, j}\)

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision 2D array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements in first \\
dimension
\end{tabular} \\
On number of elements in second \\
dimension
\end{tabular}\(|\)\begin{tabular}{l}
integer
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{T_Dist}
int status = T_Dist (double t, int \(\mathbf{n}\), double *p);

Purpose

Computes the one-sided probability \(\mathbf{p}\) :
\[
p=\operatorname{prob}(T \leq t)
\]
where T is a random variable from the T-distribution with \(\mathbf{n}\) degrees of freedom.

\section*{Parameters}
\(\left.\)\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{t}\) \\
\(\mathbf{n}\)
\end{tabular}\(\quad\)\begin{tabular}{l}
double-precision \\
integer
\end{tabular}\(\quad\)\begin{tabular}{l}
\(-\infty<\mathrm{t}<\infty\) \\
degrees of freedom
\end{tabular} \right\rvert\, probability \((0 \leq \mathrm{p}<1)\).

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
double t, p;
int n ;
\(\mathrm{t}=-123.456\);
\(\mathrm{n}=6\);
T_Dist (t, \(\mathrm{n}, \mathrm{\&} \mathrm{p}\));

\section*{ToPolar}
int \(\boldsymbol{s t a t u s}=\mathbf{T o P o l a r}(\) double \(\mathbf{x}\), double \(\mathbf{y}\), double *mag, double *phase \()\);

\section*{Purpose}

Converts the rectangular coordinates (\(\mathbf{x}, \mathbf{y}\)) to polar coordinates (mag, phase). The formulas used to obtain the polar coordinates are as follows.
\[
\begin{aligned}
& m a g=\sqrt{x^{2}+y^{2}} \\
& \text { phase }=\arctan (y / x)
\end{aligned}
\]

The phase value is in the range of \([-\pi\) to \(\pi]\).

Parameters
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
\(\mathbf{x}\) coordinate \\
\(\mathbf{y}\) coordinate
\end{tabular} \\
\hline Output & \begin{tabular}{l}
mag \\
phase
\end{tabular} & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
magnitude \\
phase (in radians)
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/*Convert the rectangular coordinates to polar coordinates. */
double x, y, mag, phase;
x = 1.5;
y = -2.5;
ToPolar (x, y, \&mag, \&phase);

```

\section*{ToPolar1D}
```

int status = ToPolar1D(double x [], double y [ ], int n, double mag[], double phase [ ]);

```

\section*{Purpose}

Converts the set of rectangular coordinate points (\(\mathbf{x}, \mathbf{y}\)) to a set of polar coordinate points (mag, phase). The \(\mathrm{i}^{\text {th }}\) element of the polar coordinate set is obtained using the following formulas.
\[
\begin{aligned}
& \operatorname{mag}_{i}=\sqrt{x_{i}^{2}+y_{i}^{2}} \\
& \text { phase }_{i}=\arctan \left(y_{i} / x_{i}\right)
\end{aligned}
\]

The phase value is in the range of \([-\pi\) to \(\pi]\).
The operations can be performed in place; that is, \(\mathbf{x}\) and mag, and \(\mathbf{y}\) and phase, can be the same arrays, respectively.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
\(\mathbf{x}\) coordinate \\
\(\mathbf{y}\) coordinate \\
number of elements
\end{tabular} \\
\hline Output & \begin{tabular}{l}
mag \\
phase
\end{tabular} & \begin{tabular}{l}
double-precision array \\
double-precision array
\end{tabular} & \begin{tabular}{l}
magnitude \\
phase (in radians)
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{ToRect}
int status = ToRect (double mag, double phase, double *x, double *y);

\section*{Purpose}

Converts the polar coordinates (mag, phase) to rectangular coordinates (\(\mathbf{x}, \mathbf{y}\)). The formulas used to obtain the rectangular coordinates are as follows.
\[
\begin{aligned}
& x=m a g * \cos (\text { phase }) \\
& y=m a g * \sin (\text { phase })
\end{aligned}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
mag \\
phase
\end{tabular} & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
magnitude \\
phase (in radians)
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
\(\mathbf{x}\) coordinate \\
\(\mathbf{y}\) coordinate
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{ToRect1D}
int status = ToRect1D (double mag [], double phase [], int \(\mathbf{n}\), double \(\mathbf{x}[\)], double \(\mathbf{y}[\)] \()\);

\section*{Purpose}

Converts the set of polar coordinate points (mag, phase) to a set of rectangular coordinate points \((\mathbf{x}, \mathbf{y})\). The \(\mathrm{i}^{\text {th }}\) element of the rectangular set is obtained using the following formulas.
\[
\begin{aligned}
& x_{i}=m a g_{i} * \cos \left(\text { phase }_{i}\right) \\
& y_{i}=\operatorname{mag}_{i} * \sin \left(\text { phase }_{i}\right)
\end{aligned}
\]

The operations can be performed in place; that is, \(\mathbf{x}\) and mag, and \(\mathbf{y}\) and phase, can be the same arrays, respectively.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
mag \\
phase \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l}
double-precision array \\
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
magnitude \\
phase (in radians) \\
number of elements
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
double-precision array
\end{tabular} & \begin{tabular}{l}
\(\mathbf{x}\) coordinate \\
\(\mathbf{y}\) coordinate
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Trace}
int status \(=\) Trace \((\operatorname{void} * \mathbf{x}\), int \(\mathbf{n}\), double *traceval \()\);

\section*{Purpose}

Finds the trace of the 2 D input matrix \(\mathbf{x}\). The trace is the sum of the matrix elements along the main diagonal. The trace is obtained using the following formula.
\[
\text { trace }=\sum_{i=0}^{n-l} x_{i, i}
\]

The input matrix must be an \(\mathbf{n}\) by \(\mathbf{n}\) square matrix.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l}
double-precision 2D array \\
integer
\end{tabular} & \begin{tabular}{l}
input matrix \\
size of matrix
\end{tabular} \\
\hline Output & traceval & double-precision & trace \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{TransferFunction}
```

int status = TransferFunction (double stimulus [ ], double response [ ], int n, double dt,
double magHf [ ], double phaseHf [ ], double *df);

```

\section*{Purpose}

Computes the single-sided transfer function (also known as the frequency response) from the time-domain stimulus signal and the time-domain response signal of a network under test.

The transfer function is computed as follows.
FFT(response) / FFT(stimulus)
and then this result is transformed to single-sided magnitude and phase.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
stimulus \\
response \\
n \\
dt
\end{tabular} & \begin{tabular}{l}
double-precision array double-precision array integer \\
double-precision
\end{tabular} & \begin{tabular}{l}
Contains the time-domain signal, usually the network stimulus. \\
Contains the time-domain signal, usually the network response. \\
The number of elements in the input stimulus and response arrays. Valid Values: Powers of 2. \\
The sample period of the time-domain signals, usually in seconds. \(\mathbf{d t}=1 / \mathrm{fs}\), where fs is the sampling frequency of the time-domain signals.
\end{tabular} \\
\hline \multirow[t]{3}{*}{Output} & magHf & double-precision array & The magnitude of the averaged singlesided transfer function between the stimulus and response signals. This array must be at least \(\mathrm{n} / 2\) elements long. \\
\hline & phaseHf & double-precision array & The phase, in radians of the averaged single-sided transfer function between the stimulus and response signals. This array must be at least \(\mathrm{n} / 2\) elements long. \\
\hline & df & double-precision & Points to the frequency interval, in hertz, if dt is in seconds.
\[
* \mathbf{d f}=1 /(\mathbf{n} * \mathbf{d t}) .
\] \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{Transpose}
int status \(=\) Transpose \((\operatorname{void} * \mathbf{x}\), int \(\mathbf{n}\), int \(\mathbf{m}\), void * \(\mathbf{y}\));

\section*{Purpose}

Finds the transpose of a 2D input matrix. The \(\left(\mathrm{i}^{\text {th }}, \mathrm{j}^{\text {th }}\right)\) element of the resulting matrix is given by the following formula.
\[
y_{i, j}=x_{j, i}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision 2D array \\
integer \\
integer
\end{tabular} & \begin{tabular}{l}
input matrix \\
size of first dimension \\
size of second dimension
\end{tabular} \\
\hline Output & \(\mathbf{y}\) & double-precision 2D array & transpose matrix \\
\hline
\end{tabular}

Note: If the input matrix is dimensioned (n by m), then the output matrix must be dimensioned (mby n).

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Triangle}
int status = Triangle (int n, double amp, double tri []);

\section*{Purpose}

Generates an output array that has a triangular pattern. The \(i^{\text {th }}\) element of the double-precision output array is obtained using the following formulas.
\[
\begin{array}{ll}
\operatorname{tri}_{i}=\operatorname{amp}(1-|2 i-n| / n) & \text { if } \boldsymbol{n} \text { is even } \\
\operatorname{tri}_{i}=\operatorname{amp}(1-|2 i-n+1| /(n-1)) & \text { if } \boldsymbol{n} \text { is odd }
\end{array}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{n}\) \\
\(\mathbf{a m p}\)
\end{tabular} & \begin{tabular}{l}
integer \\
double-precision
\end{tabular} & \begin{tabular}{l}
number of samples \\
amplitude
\end{tabular} \\
\hline Output & tri & double-precision array & triangular pattern \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

/* The following code generates the pattern tri = { 0.0, 1.0, 2.0, 3.0, 4.0,
3.0, 2.0, 1.0 }. */
double tri[8], amp;
int n;
n = 8;
amp = 4.0;
Triangle (n, amp, tri);

```

\section*{TriangleWave}
int status = TriangleWave (int n, double amp, double f, double *phase, double \(\mathbf{x}[\)] \()\);

\section*{Purpose}

Generates an array containing a triangle wave. The output array \(\mathbf{x}\) is generated according to the following formula.
\[
x_{i}=\operatorname{amp} * \operatorname{tri}(* p h a s e+f * 360.0 * i)
\]
where
\[
\begin{aligned}
& f=\text { frequency, cycles/sample } \\
& \operatorname{tri}(\mathrm{p})=\left\{\begin{array}{lc}
2 *((\mathrm{p} \text { modulo } 360) / 180) & 0 \leq \mathrm{p} \text { modulo } 360<90 \\
2 *(1-(\mathrm{p} \text { modulo } 360) / 180) & 90 \leq \mathrm{p} \text { modulo } 360<270 \\
2 *((\mathrm{p} \text { modulo } 360) / 180-2) & 270 \leq \mathrm{p} \text { modulo } 360<360
\end{array}\right.
\end{aligned}
\]

This function can be used to simulate a continuous acquisition from a triangle wave function generator. The unit of the input *phase is in degrees, and *phase is set to (*phase \(+\mathbf{f}^{*} 360 * \mathbf{n}\)) modulo 360 before returning.

Parameters
\begin{tabular}{|c|c|c|c|}
\hline Input & \[
\begin{aligned}
& \mathrm{n} \\
& \mathrm{amp} \\
& \mathrm{f} \\
& \text { phase }
\end{aligned}
\] & \begin{tabular}{l}
integer double-precision double-precision \\
double-precision pointer
\end{tabular} & \begin{tabular}{l}
The number of samples to generate. The amplitude of the resulting signal. The frequency of the resulting signal in normalized units of cycles/sample. \\
Points to the initial phase, in degrees, of the generated signal.
\end{tabular} \\
\hline Output & phase
\[
\mathbf{x}
\] & \begin{tabular}{l}
double-precision \\
double-precision array
\end{tabular} & \begin{tabular}{l}
Upon completion of this function, phase points to the phase of the next portion of the signal. Use this parameter in the next call to this function to simulate a continuous function generator. \\
Contains the generated triangle wave signal.
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & refer to error codes in Appendix A \\
\hline
\end{tabular}

\section*{TriWin}
int status = TriWin (double \(\mathbf{x}[]\), int \(\mathbf{n})\);

\section*{Purpose}

Applies a triangular window to the \(\mathbf{x}\) input signal. The triangular window is defined by:
\[
\mathrm{w}_{\mathrm{i}}=1-|2 * \mathrm{i}-\mathrm{n}| / \mathrm{n} \quad \text { for } \mathrm{i}=0,1, \ldots, \mathrm{n}-1
\]

The output signal is obtained by:
\[
\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}{ }^{*} \mathrm{w}_{\mathrm{i}} \quad \text { for } \mathrm{i}=0,1, \ldots, \mathrm{n}-1
\]

The window operation is performed in place. The windowed data \(\mathbf{x}\) replaces the input data \(\mathbf{x}\).

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{x}\) \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input data \\
number of elements in \(\mathbf{x}\)
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision array & windowed data \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Uniform}
int status \(=\) Uniform (int \(\mathbf{n}\), int seed, double \(\mathbf{x}[\)] ;

\section*{Purpose}

Generates an array of random numbers that are uniformly distributed between zero and one.
Parameters
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{n}\) \\
seed
\end{tabular} & \begin{tabular}{l}
integer \\
integer
\end{tabular} & \begin{tabular}{l}
number of samples \\
seed value
\end{tabular} \\
\hline Output & \(\mathbf{x}\) & double-precision array & random pattern between 0 and 1 \\
\hline
\end{tabular}

\section*{Parameter Discussion}

When seed \(\geq 0\), a new random sequence is generated using the seed value. When seed \(<0\), the previously generated random sequence continues.

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}
```

Example
/* The following code generates an array of random numbers between 0 and 1. */
double x[20];
int n;
n = 20;
Uniform (n, 17, x);

```

\section*{UnWrap1D}
int status = UnWrap1D (double phase [], int n);

\section*{Purpose}

Unwraps the discontinuous phase values that are in the range from \(-\pi\) to \(\pi\) to create continuous values. The input array, phase, is overwritten.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & phase & double-precision array & \begin{tabular}{l}
array of discontinuous phase \\
values \\
number of elements
\end{tabular} \\
\hline Output & phase & double-precision array & \begin{tabular}{l}
array of continuous phase \\
values
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Variance}
```

int status = Variance (double x [ ] , int n, double *meanval, double *var);

```

\section*{Purpose}

Computes the variance and the mean (average) values of the input array. The following formulas are used to find the mean and the variance.
\[
\begin{aligned}
& \text { meanval }=\sum_{i=0}^{n-1} x_{i} / n \\
& \text { var }=\sum_{i=0}^{n-1}\left[x_{i}-\text { meanval }\right]^{2} / n
\end{aligned}
\]

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision array \\
integer
\end{tabular} & \begin{tabular}{l}
input array \\
number of elements in \(\mathbf{x}\)
\end{tabular} \\
\hline Output & \begin{tabular}{l}
meanval \\
var
\end{tabular} & \begin{tabular}{l}
double-precision \\
double-precision
\end{tabular} & \begin{tabular}{l}
mean value \\
variance
\end{tabular} \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{WhiteNoise}
int status = WhiteNoise (int n, double amp, int seed, double *noise []);

\section*{Purpose}

Generates an array of random numbers that are uniformly distributed between -amp and amp.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \begin{tabular}{l}
\(\mathbf{n}\) \\
amp \\
seed
\end{tabular} & \begin{tabular}{l}
integer \\
double-precision \\
integer
\end{tabular} & \begin{tabular}{l}
number of samples \\
amplitude \\
seed value
\end{tabular} \\
\hline Output & noise & double-precision array & noise pattern \\
\hline
\end{tabular}

\section*{Parameter Discussion}

When seed \(\geq 0\), a new random sequence is generated using the seed value. When seed \(<0\), the previously generated random sequence continues.

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}
```

Example
/* The following code generates an array of random numbers between -5 and 5.
*/
double x[20], amp;
int n;
n = 20;
amp = 5.0;
WhiteNoise (n, amp, 17, x);

```

\section*{Wind_BPF}
```

int status = Wind_BPF (double fs, double fl, double fh, int n, double coef [],
int windType);

```

\section*{Purpose}

Designs a digital bandpass FIR linear phase filter using a windowing technique. Five windows are available. This function generates only the filter coefficients. No filtering of data is actually performed.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & fs & double-precision & sampling frequency \\
& fl & double-precision & lower cutoff frequency \\
& fh & double-precision & higher cutoff frequency \\
& n \\
& integer & number of filter coefficients \\
window type
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

The parameter windType selects one of the five windows as shown in the following table.
\begin{tabular}{|c|l|c|c|}
\hline windType & Window & Attenuation (dB) & Transition Bandwidth (fs/n) \\
\hline 1 & Rectangular & 21 & 0.9 \\
2 & Triangular & 25 & 1.18 \\
3 & Hanning & 44 & 2.5 \\
4 & Hamming & 53 & 3.13 \\
5 & Blackman & 74 & 4.6 \\
\hline
\end{tabular}

\section*{Using This Function}

The attenuation value determines the approximate peak value of the sidelobes. Transition bandwidth determines a frequency range over which the filter response changes from the pass band to the stop band or from the stop band to the pass band. For more information, refer to Digital Signal Processing by Oppenheim and Schafer.

\section*{Example}
/* Design a 55-point bandpass FIR linear phase filter that can achieve at least a 44 dB attenuation and filter the incoming signal with the designed filter. */
double \(x[256], \operatorname{coef}[55], y[310], f s, f l, f h ;\)
int \(n, m, w i n d T y p e ;\)
fs \(=1000.0 ; \quad / *\) sampling frequency */
fl \(=200.0 ; \quad / *\) desired lower cutoff frequency */
fh \(=300.0\); \(/ *\) desired higher cutoff frequency */
\(\mathrm{n}=55\); /* filter length */
windType \(=3\); /* using Hanning window */
\(m=256\);
Wind_BPF (fs, fl, fh, n, coef, windType);
Convolve (coef, \(n, x, m, y) ; / *\) convolve the filter with the signal */

\section*{Wind_BSF}
```

int status = Wind_BSF (double fs, double fl, double fh, int n, double coef [ ],
int windType);

```

\section*{Purpose}

Designs a digital bandstop FIR linear phase filter using a windowing technique. Five windows are available. This function generates only the filter coefficients. No filtering of data is actually performed.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & fs & double-precision & sampling frequency \\
& fl & double-precision & lower cutoff frequency \\
& fh & double-precision & higher cutoff frequency \\
& n \\
& integer & number of filter coefficients \\
indeger & window type \\
\hline Output & coef & double-precision array & filter coefficients \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

The parameter windType selects one of the five windows as shown in the following table.
\begin{tabular}{|c|l|c|c|}
\hline windType & Window & Attenuation (dB) & Transition Bandwidth (fs/n) \\
\hline 1 & Rectangular & 21 & 0.9 \\
2 & Triangular & 25 & 1.18 \\
3 & Hanning & 44 & 2.5 \\
4 & Hamming & 53 & 3.13 \\
5 & Blackman & 74 & 4.6 \\
\hline
\end{tabular}

\section*{Using This Function}

The attenuation value determines the approximate peak value of the sidelobes. Transition bandwidth determines a frequency range over which the filter response changes from the pass band to the stop band or from the stop band to the pass band. For more information, refer to Digital Signal Processing by Oppenheim and Schafer.

\section*{Example}
```

/* Design a 55-point bandstop FIR linear phase filter that can achieve at
least a 44 dB attenuation and filter the incoming signal with the designed
filter. */
double x[256], coef[55], y[310], fs, fl, fh;
int n, m, windType;
fs = 1000.0; /* sampling frequency */
fl = 200.0; /* desired lower cutoff frequency */
fh = 300.0; /* desired higher cutoff frequency */
/* stop band is from 200.0 to 300.0 */
n = 55; = 3; l* filter length */

```
```

m = 256;
Wind_BSF (fs, fl, fh, n, coef, windType);
Convolve (coef, n, x, m, y); /* convolve the filter with*/
/* the signal */

```

\section*{Wind_HPF}
int status = Wind_HPF (double fs, double fc, int \(\mathbf{n}\), double coef [], int windType);

\section*{Purpose}

Designs a digital highpass FIR linear phase filter using a windowing technique. Five windows are available. This function generates only the filter coefficients. No filtering of data is actually performed.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & fs & double-precision & sampling frequency \\
& fc \\
n \\
windType & \begin{tabular}{l}
integer \\
integer
\end{tabular} & \begin{tabular}{l}
nutoff frequency \\
number of filter coefficients \\
window type
\end{tabular} \\
\hline Output & coef & double-precision array & filter coefficients \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

The parameter windType selects one of the five windows as shown in the following table.
\begin{tabular}{|c|l|c|c|}
\hline windType & Window & Attenuation (dB) & Transition Bandwidth (fs/n) \\
\hline 1 & Rectangular & 21 & 0.9 \\
2 & Triangular & 25 & 1.18 \\
3 & Hanning & 44 & 2.5 \\
4 & Hamming & 53 & 3.13 \\
5 & Blackman & 74 & 4.6 \\
\hline
\end{tabular}

\section*{Using This Function}

The attenuation value determines the approximate peak value of the sidelobes. Transition bandwidth determines a frequency range over which the filter response changes from the pass
band to the stop band or from the stop band to the pass band. For more information, refer to Digital Signal Processing by Oppenheim and Schafer.

\section*{Example}
```

/* Design a 55-point highpass FIR linear phase filter that can achieve at
least a 44 dB attenuation and filter the incoming signal with the designed
filter. */
double x[256], coef[55], y[310], fs, fc;
int n, m, windType;
fs = 1000.0; /* sampling frequency */
fc = 200.0; /* desired cutoff frequency */
n = 55; /* filter length */
windType = 3; /* using Hanning window */
m = 256;
Wind_HPF (fs, fc, n, coef, windType);
Convolve (coef, n, x, m, y); /* convolve the filter with */
/* the signal */

```

\section*{Wind_LPF}
int status = Wind_LPF (double fs, double fc, int \(\mathbf{n}\), double coef [] , int windType \()\);

\section*{Purpose}

Designs a digital lowpass FIR linear phase filter using a windowing technique. Five windows are available. This function generates only the filter coefficients. No filtering of data is actually performed.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & fs & double-precision & sampling frequency \\
double-precision \\
fc & n \\
windType & integer frequency \\
number of filter coefficients \\
Output & coef & double-precision array & filter coefficients \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameter Discussion}

The parameter windType selects one of the five windows as shown in the following table.
\begin{tabular}{|c|l|c|c|}
\hline windType & Window & Attenuation (dB) & Transition Bandwidth (fs/n) \\
\hline 1 & Rectangular & 21 & 0.9 \\
2 & Triangular & 25 & 1.18 \\
3 & Hanning & 44 & 2.5 \\
4 & Hamming & 53 & 3.13 \\
5 & Blackman & 74 & 4.6 \\
\hline
\end{tabular}

\section*{Using This Function}

The attenuation value determines the approximate peak value of the sidelobes. Transition bandwidth determines a frequency range over which the filter response changes from the pass band to the stop band or from the stop band to the pass band. For more information, refer to Digital Signal Processing by Oppenheim and Schafer.

\section*{Example}
```

/* Design a 55-point lowpass FIR linear phase filter that can achieve at least
a 44 dB attenuation and filter the incoming signal with the designed filter.
*/
double x[256], coef[55], y[310], fs, fc;
int n, m, windType;
fs = 1000.0; /* sampling frequency */
fc = 200.0; /* desired cutoff frequency */
n = 55; /* filter length */
windType = 3; /* using Hanning window */
m = 256;
Wind_LPF (fs, fc, n, coef, windType);
Convolve (coef, n, x, m, y); /* convolve the filter with */
/* the signal */

```

\section*{XX_Dist}
int status = XX_Dist (double \(\mathbf{x}\), int \(\mathbf{n}\), double *p);

\section*{Purpose}

Approximates the one-sided probability \(\mathbf{p}\) :
\[
p=\operatorname{prob}(X \leq x)
\]
where X is a random variable from the \(\chi^{2}\)-distribution with \(\mathbf{n}\) degrees of freedom.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input & \(\mathbf{x}\) & \begin{tabular}{l}
double-precision \\
integer
\end{tabular} & \begin{tabular}{l}
\(-\infty<\mathrm{x}<\infty\) \\
degrees of freedom
\end{tabular} \\
\hline Output & \(\mathbf{p}\) & double-precision & probability \((0 \leq \mathrm{p}<1)\) \\
\hline
\end{tabular}

\section*{Return Value}
\begin{tabular}{|l|l|l|}
\hline status & integer & \begin{tabular}{l}
refer to error codes in \\
Appendix A
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

double x, p;
int n;
x = -123.456;
n = 6;
XX_Dist (x, n, \&p);
/* Now p = 0 because \chi}\mp@subsup{\chi}{}{2}\mathrm{ distributed variables are non-negative.*/

```

\section*{Appendix A}

\section*{Error Codes}

This appendix contains error codes returned by the Advanced Analysis Library functions. If an error condition occurs during a call to any of the functions in the LabWindows Analysis Library, the return value status will contain the returned error code. This code is a value that specifies the type of error that occurred. Table A-2 lists the error codes in numeric order. For your convenience, Table A-1 lists the error codes alphabetically by symbolic name.

Table A-1. Advanced Analysis Library Error Codes, Sorted Alphabetically
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Symbolic Name } & \multicolumn{1}{c|}{ Code } & \multicolumn{1}{c|}{ Error Message } \\
\hline ArraySizeAnlysErr & -20008 & \begin{tabular}{l}
The specified conditions on the input arrays have \\
not been met.
\end{tabular} \\
\hline AttenGTRippleAnlysErr & -20028 & \begin{tabular}{l}
The attenuation must be greater than the ripple \\
amplitude.
\end{tabular} \\
\hline AttenGTZeroAnlysErr & -20025 & The attenuation must be greater than zero. \\
\hline BalanceAnlysErr & -20047 & The data is unbalanced. \\
\hline BandSpecAnlysErr & -20023 & Invalid band specification. \\
\hline BaseGETopAnlysErr & -20101 & Base must be less than Top. \\
\hline BetaFuncAnlysErr & -20057 & \begin{tabular}{l}
The parameter to the beta function must meet the \\
condition: 0 p \(<1\).
\end{tabular} \\
\hline CategoryAnlysErr & -20055 & Invalid number of categories or samples. \\
\hline ColumnAnlysErr & -20051 & The first column in the X matrix must be all ones. \\
\hline CyclesAnlysErr & -20012 & \begin{tabular}{l}
The number of cycles must meet the condition: \\
\(0<\) cycles \(\leq\) samples.
\end{tabular} \\
\hline DataAnlysErr & -20045 & \begin{tabular}{l}
The total number of data points must be equal to \\
product of (levels/each factor) * (observations/cell).
\end{tabular} \\
\hline DecFactAnlysErr & -20022 & \begin{tabular}{l}
The decimating factor must meet the condition: \\
\(0<\) decimating factor \(\leq\) samples.
\end{tabular} \\
\hline DelayWidthAnlysErr & -20014 & \begin{tabular}{l}
The delay and width must meet the condition: \\
\(0 \leq\) (delay + width) < samples.
\end{tabular} \\
\hline DimensionAnlysErr & -20058 & \begin{tabular}{l}
Invalid number of dimensions or dependent \\
variables.
\end{tabular} \\
\hline DistinctAnlysErr & -20049 & The x-values must be distinct. \\
\hline
\end{tabular}
(continues)

Table A-1. Advanced Analysis Library Error Codes (Continued)
\begin{tabular}{|c|c|c|}
\hline Symbolic Name & Code & Error Message \\
\hline DivByZeroAnlysErr & -20060 & Divide by zero. \\
\hline DtGTZeroAnlysErr & -20016 & dt or dx must be greater than zero. \\
\hline EqRplDesignAnlysErr & -20031 & The filter cannot be designed with the specified input parameters. \\
\hline EqSamplesAnlysErr & -20002 & Input sequences must be the same size. \\
\hline EvenSizeAnlysErr & -20033 & The number of coefficients must be odd for this filter. \\
\hline FactorAnlysErr & -20043 & The level of factor is outside the allowable range. \\
\hline FreedomAnlysErr & -20052 & Invalid degrees of freedom. \\
\hline IndexLengthAnlysErr & -20018 & The index and lenght must meet the condition: \(0 \leq\) (index + length) < samples. \\
\hline IndexLTSamplesAnlysErr & -20017 & The index must meet the condition: \(0 \leq\) index < samples. \\
\hline InvSelectionAnlysErr & -20061 & Invalid selection. \\
\hline IIRFilterInfoAnlysErr & -20066 & The information in the IIR filter structure is invalid. \\
\hline LevelsAnlysErr & -20042 & The number of levels is outside the allowable range. \\
\hline MaxIterAnlysErr & -20062 & Maximum iteration exceeded. \\
\hline MixedSignAnlysErr & -20036 & The second array must be all positive or negative and nonzero. \\
\hline ModelAnlysErr & -20048 & The Random Effect model was requested when the Fixed Effect model is required. \\
\hline NoAnlysErr & 0 & No error; the call was successful. \\
\hline NyquistAnlysErr & -20020 & The cut-off frequency, fc, must meet the condition: \(0 \leq \mathrm{fc} \leq \mathrm{fs} / 2\). \\
\hline ObservationsAnlysErr & -20044 & There must be at least one observation. \\
\hline OddSizeAnlysErr & -20034 & The number of coefficients must be even for this filter. \\
\hline OrderGEZeroAnlysErr & -20103 & Order must be greater than or equal to zero. \\
\hline OrderGTZeroAnlysErr & -20021 & The order must be greater than zero.. \\
\hline OutOfMemAnlysErr & -20001 & There is not enough memory left to perform the specified routine. \\
\hline
\end{tabular}
(continues)

Table A-1. Advanced Analysis Library Error Codes (Continued)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Symbolic Name } & Code & \multicolumn{1}{c|}{ Error Message } \\
\hline PoleAnlysErr & -20050 & \begin{tabular}{l}
The interpolating function has a pole at the \\
requested value.
\end{tabular} \\
\hline PolyAnlysErr & -20063 & Invalid polynomial. \\
\hline PowerOfTwoAnlysErr & -20009 & \begin{tabular}{l}
The size of the input array must be a valid power of \\
two: size \(=2^{m}\).
\end{tabular} \\
\hline ProbabilityAnlysErr & -20053 & The probability must meet the condition: \(0<\mathrm{p}<1\). \\
\hline RippleGTZeroAnlysErr & -20024 & The ripple must be greater than zero. \\
\hline SamplesGEThreeAnlysErr & -20007 & \begin{tabular}{l}
The number of samples must be greater than or \\
equal to three.
\end{tabular} \\
\hline SamplesGETwoAnlysErr & -20006 & \begin{tabular}{l}
The number of samples must be greater than or \\
equal to two.
\end{tabular} \\
\hline SamplesGEZeroAnlysErr & -20004 & \begin{tabular}{l}
The number of samples must be greater than or \\
equal to zero.
\end{tabular} \\
\hline SamplesGTZeroAnlysErr & -20003 & The number of samples must be greater than zero. \\
\hline ShiftRangeAnlysErr & -20102 & \begin{tabular}{l}
The shifts must meet the condition: |shifts \(\mid<\) \\
samples.
\end{tabular} \\
\hline SingularMatrixAnlysErr & -20041 & \begin{tabular}{l}
The input matrix is singular. The system of \\
equations cannot be solved.
\end{tabular} \\
\hline SizeGTOrderAnlysErr & -20037 & The array size must be greater than the order. \\
\hline SquareMatrixAnlysErr & -20040 & The input matrix must be a square matrix. \\
\hline TableAnlysErr & -20056 & The contingency table has a negative number. \\
\hline UpperGELowerAnlysErr & -20019 & \begin{tabular}{l}
The upper value must be greater than or equal to the \\
lower value.
\end{tabular} \\
\hline ZeroVectorAnlysErr & -20065 & The elements of the vector cannot be all zero. \\
\hline
\end{tabular}

Table A-2. Advanced Analysis Library Error Codes, Sorted Numerically
\begin{tabular}{|c|c|c|}
\hline Symbolic Name & Code & Error Message \\
\hline NoAnlysErr & 0 & No error; the call was successful. \\
\hline OutOfMemAnlysErr & -20001 & There is not enough memory left to perform the specified routine. \\
\hline EqSamplesAnlysErr & -20002 & Input sequences must be the same size. \\
\hline SamplesGTZeroAnlysErr & -20003 & The number of samples must be greater than zero. \\
\hline SamplesGEZeroAnlysErr & -20004 & The number of samples must be greater than or equal to zero. \\
\hline SamplesGETwoAnlysErr & -20006 & The number of samples must be greater than or equal to two. \\
\hline SamplesGEThreeAnlysErr & -20007 & The number of samples must be greater than or equal to three. \\
\hline ArraySizeAnlysErr & -20008 & The specified conditions on the input arrays have not been met. \\
\hline PowerOfTwoAnlysErr & -20009 & The size of the input array must be a valid power of two: size \(=2^{m}\). \\
\hline CyclesAnlysErr & -20012 & The number of cycles must meet the condition: 0 < cycles \(\leq\) samples. \\
\hline DelayWidthAnlysErr & -20014 & The delay and width must meet the condition: \(0 \leq\) (delay + width) < samples. \\
\hline DtGTZeroAnlysErr & -20016 & dt or dx must be greater than zero. \\
\hline IndexLTSamplesAnlysErr & -20017 & The index must meet the condition: \(0 \leq\) index < samples. \\
\hline IndexLengthAnlysErr & -20018 & The index and lenght must meet the condition: \(0 \leq\) (index + length) < samples. \\
\hline UpperGELowerAnlysErr & -20019 & The upper value must be greater than or equal to the lower value. \\
\hline NyquistAnlysErr & -20020 & The cut-off frequency, fc, must meet the condition: \(0 \leq \mathrm{fc} \leq \mathrm{fs} / 2\). \\
\hline OrderGTZeroAnlysErr & -20021 & The order must be greater than zero. \\
\hline DecFactAnlysErr & -20022 & The decimating factor must meet the condition: 0 < decimating factor \(\leq\) samples. \\
\hline BandSpecAnlysErr & -20023 & Invalid band specification. \\
\hline RippleGTZeroAnlysErr & -20024 & The ripple must be greater than zero. \\
\hline
\end{tabular}
(continues)

Table A-2. Advanced Analysis Library Error Codes (Continued)
\begin{tabular}{|c|c|c|}
\hline Symbolic Name & Code & Error Message \\
\hline AttenGTZeroAnlysErr & -20025 & The attenuation must be greater than zero. \\
\hline AttenGTRippleAnlysErr & -20028 & The attenuation must be greater than the ripple amplitude. \\
\hline EqRplDesignAnlysErr & -20031 & The filter cannot be designed with the specified input parameters. \\
\hline EvenSizeAnlysErr & -20033 & The number of coefficients must be odd for this filter. \\
\hline OddSizeAnlysErr & -20034 & The number of coefficients must be even for this filter. \\
\hline MixedSignAnlysErr & -20036 & The second array must be all positive or negative and nonzero. \\
\hline SizeGTOrderAnlysErr & -20037 & The array size must be greater than the order. \\
\hline SquareMatrixAnlysErr & -20040 & The input matrix must be a square matrix. \\
\hline SingularMatrixAnlysErr & -20041 & The input matrix is singular. The system of equations cannot be solved. \\
\hline LevelsAnlysErr & -20042 & The number of levels is outside the allowable range. \\
\hline FactorAnlysErr & -20043 & The level of factor is outside the allowable range. \\
\hline ObservationsAnlysErr & -20044 & There must be at least one observation. \\
\hline DataAnlysErr & -20045 & The total number of data points must be equal to product of (levels/each factor) * (observations/cell). \\
\hline BalanceAnlysErr & -20047 & The data is unbalanced. \\
\hline ModelAnlysErr & -20048 & The Random Effect model was requested when the Fixed Effect model is required. \\
\hline DistinctAnlysErr & -20049 & The x -values must be distinct. \\
\hline PoleAnlysErr & -20050 & The interpolating function has a pole at the requested value. \\
\hline ColumnAnlysErr & -20051 & The first column in the X matrix must be all ones. \\
\hline FreedomAnlysErr & -20052 & Invalid degrees of freedom. \\
\hline ProbabilityAnlysErr & -20053 & The probability must meet the condition: \(0<\mathrm{p}<1\). \\
\hline CategoryAnlysErr & -20055 & Invalid number of categories or samples. \\
\hline TableAnlysErr & -20056 & The contingency table has a negative number. \\
\hline
\end{tabular}
(continues)

Table A-2. Advanced Analysis Library Error Codes (Continued)
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Symbolic Name } & Code & \multicolumn{1}{c|}{ Error Message } \\
\hline BetaFuncAnlysErr & -20057 & \begin{tabular}{l}
The parameter to the beta function must meet the \\
condition: \(0<\mathrm{p}<1\).
\end{tabular} \\
\hline DimensionAnlysErr & -20058 & \begin{tabular}{l}
Invalid number of dimensions or dependent \\
variables.
\end{tabular} \\
\hline DivByZeroAnlysErr & -20060 & Divide by zero. \\
\hline InvSelectionAnlysErr & -20061 & Invalid selection. \\
\hline MaxIterAnlysErr & -20062 & Maximum iteration exceeded. \\
\hline PolyAnlysErr & -20063 & Invalid polynomial. \\
\hline ZeroVectorAnlysErr & -20065 & The elements of the vector cannot be all zero. \\
\hline IIRFilterInfoAnlysErr & -20066 & \begin{tabular}{l}
The information in the IIR filter structure is \\
invalid.
\end{tabular} \\
\hline BaseGETopAnlysErr & -20101 & Base must be less than Top. \\
\hline ShiftRangeAnlysErr & -20102 & \begin{tabular}{l}
The shifts must meet the condition: \(\mid\) shifts \(\mid<\) \\
samples.
\end{tabular} \\
\hline OrderGEZeroAnlysErr & -20103 & Order must be greater than or equal to zero. \\
\hline
\end{tabular}

\section*{Appendix B}

Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary to help us solve technical problems you might have as well as a form you can use to comment on the product documentation. Filling out a copy of the Technical Support Form before contacting National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S. and Canada, applications engineers are available Monday through Friday from 8:00 a.m. to 6:00 p.m. (central time). In other countries, contact the nearest branch office. You may fax questions to us at any time.

\section*{Electronic Services}

\section*{\(\equiv\) \\ Bulletin Board Support}

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files and documents to answer most common customer questions. From these sites, you can also download the latest instrument drivers, updates, and example programs. For recorded instructions on how to use the bulletin board and FTP services and for BBS automated information, call (512) 795-6990. You can access these services at:
- United States: (512) 794-5422 or (800) 327-3077

Up to 14,400 baud, 8 data bits, 1 stop bit, no parity
- United Kingdom: 01635551422

Up to 9,600 baud, 8 data bits, 1 stop bit, no parity
- France: 148651559

Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

\section*{三 FaxBack Support}

FaxBack is a 24-hour information retrieval system containing a library of documents on a wide range of technical information. You can access FaxBack from a touch-tone telephone at the following number: (512) 418-1111.

\section*{FTP Support}

To access our FTP site, log on to our Internet host, ftp. natinst.com, as anonymous and use your Internet address, such as joesmith@anywhere.com, as your password. The support files and documents are located in the /support directories.

\section*{E-Mail Support (currently U.S. only)}

You can submit technical support questions to the appropriate applications engineering team through e-mail at the Internet addresses listed below. Remember to include your name, address, and phone number so we can contact you with solutions and suggestions.
\begin{tabular}{ll}
GPIB: & gpib.support@natinst.com \\
DAQ: & daq.support@natinst.com \\
VXI: & vxi.support@natinst.com \\
LabVIEW: & lv.support@natinst.com \\
LabWindows: & lw.support@natinst.com \\
HiQ: & hiq.support@natinst.com \\
Lookout: & lookout.support@natinst.com \\
VISA: & visa.support@natinst.com
\end{tabular}

\section*{Fax and Telephone Support}

National Instruments has branch offices all over the world. Use the list below to find the technical support number for your country. If there is no National Instruments office in your country, contact the source from which you purchased your software to obtain support.
\begin{tabular}{lll}
Australia & 0398799422 & 0398799179 \\
Austria & 06624579900 & 066245799019 \\
Belgium & 027570020 & 027570311 \\
Canada (Ontario) & 5196229310 & \\
Canada (Quebec) & 5146948521 & 5146944399 \\
Denmark & 45762600 & 45762602 \\
Finland & 905272321 & 905022930 \\
France & 148142424 & 148142414 \\
Germany & 0897413130 & 0897146035 \\
Hong Kong & 26453186 & 26868505 \\
Italy & 02413091 & 0241309215 \\
Japan & 0354722970 & 0354722977 \\
Korea & 025967456 & 025967455 \\
Mexico & 958000100793 & 55203282 \\
Netherlands & 0348433466 & 0348430673 \\
Norway & 32848400 & 32848600 \\
Singapore & 2265886 & 2265887 \\
Spain & 916400085 & 916400533 \\
Sweden & 087304970 & 087304370 \\
Switzerland & 0562005151 & 0562005155 \\
Taiwan & 023771200 & 027374644 \\
U.K. & 01635523545 & 01635523154
\end{tabular}

\section*{Technical Support Form}

Photocopy this form and update it each time you make changes to your software or hardware, and use the completed copy of this form as a reference for your current configuration. Completing this form accurately before contacting National Instruments for technical support helps our applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem, include the configuration forms from their user manuals. Include additional pages if necessary.

Name \(\qquad\)
Company \(\qquad\)
Address \(\qquad\)

Operating system: Windows 3.1, Windows for Workgroups 3.11, Windows NT 3.1, Windows NT 3.5, Windows 95, other (include version number) \(\qquad\)
\begin{tabular}{|c|c|c|c|}
\hline Clock Speed _ MHz & RAM _MB & Display adapter & \\
\hline Mouse ___yes ___ no O & Other adapters installed & & \\
\hline Hard disk capacity __ MB B & Brand & & \\
\hline Instruments used & & & \\
\hline National Instruments hardware product & ct model & Revision & \\
\hline Configuration & & & \\
\hline National Instruments software product & & Version & \\
\hline Configuration & & & \\
\hline
\end{tabular}

The problem is \(\qquad\)
\(\qquad\)
\(\qquad\)

List any error messages \(\qquad\)
\(\qquad\)
\(\qquad\)

The following steps will reproduce the problem \(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Hardware and Software Configuration Form}

Record the settings and revisions of your hardware and software on the line to the right of each item. Complete a new copy of this form each time you revise your software or hardware configuration, and use this form as a reference for your current configuration. When you complete this form accurately before contacting National Instruments for technical support, our applications engineers can answer your questions more efficiently.

\section*{National Instruments Products}

Data Acquisition Hardware Revision \(\qquad\)
Interrupt Level of Hardware \(\qquad\)

DMA Channels of Hardware \(\qquad\)
Base I/O Address of Hardware \(\qquad\)
NI-DAQ, LabVIEW, or
LabWindows Version \(\qquad\)

\section*{Other Products}

Computer Make and Model \(\qquad\)
Microprocessor \(\qquad\)
Clock Frequency \(\qquad\)
Type of Video Board Installed \(\qquad\)

Operating System \(\qquad\)
Operating System Version \(\qquad\)
Operating System Mode \(\qquad\)
Programming Language \(\qquad\)
Programming Language Version \(\qquad\)
Other Boards in System \(\qquad\)
Base I/O Address of Other Boards \(\qquad\)
DMA Channels of Other Boards \(\qquad\)
Interrupt Level of Other Boards \(\qquad\)

\section*{Documentation Comment Form}

National Instruments encourages you to comment on the documentation supplied with our products. This information helps us provide quality products to meet your needs.

Title: LabWindows \({ }^{\circledR} /\) CVI Advanced Analysis Library Reference Manual
Edition Date: July 1996
Part Number: 320686C-01

Please comment on the completeness, clarity, and organization of the manual.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

If you find errors in the manual, please record the page numbers and describe the errors.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Thank you for your help.
Name \(\qquad\)
Title \(\qquad\)
Company \(\qquad\)
Address \(\qquad\)
\(\operatorname{Fax} \quad(\ldots \quad\) ___ \(\quad\) Phone \(\quad(\ldots \quad)\)

Mail to: Technical Publications
National Instruments Corporation
6504 Bridge Point Parkway
Austin, TX 78730-5039

Fax to: Technical Publications
National Instruments Corporation
(512) 794-5678

\section*{Glossary}
\begin{tabular}{|l|l|l|}
\hline Prefix & Meaning & Value \\
\hline p- & pico- & \(10^{-12}\) \\
\(\mathrm{n}-\) & nano- & \(10^{-9}\) \\
\(\mu-\) & micro- & \(10^{-6}\) \\
m- & milli- & \(10^{-3}\) \\
k- & kilo- & \(10^{3}\) \\
M- & mega- & \(10^{6}\) \\
\hline
\end{tabular}

\section*{Numbers}
\begin{tabular}{ll}
1 D & one-dimensional \\
2D & two-dimensional
\end{tabular}

A
active window

ANOVA analysis of variance
Array Display A mechanism for viewing and editing numeric arrays.
auto-exclusion
The window affected by user input at a given moment. The title of an active window is highlighted.

A mechanism that prevents pre-existing lines from executing in the Interactive Execution Window.

\section*{B}
bps bits per second
breakpoint An interruption in the execution of a program.

\section*{C}
\begin{tabular}{ll}
caption bar & \begin{tabular}{l}
An area directly beneath the command bar at the top of a window that \\
displays the name of the file you are working on.
\end{tabular} \\
centimeters \\
command bar & \begin{tabular}{l}
An area along the top of a window that contains the names of the \\
LabWindows/CVI command menus.
\end{tabular} \\
common control \(\quad\)\begin{tabular}{l}
A function panel control that specifies the first parameter in both primary \\
and secondary functions associated with a function panel. A common \\
control appears on a function panel in the same color or intensity as a \\
primary control.
\end{tabular} \\
control \(\quad\)\begin{tabular}{l}
An input and output device that appears on a function panel for specifying \\
function parameters and displaying function results.
\end{tabular}
\end{tabular}

\section*{D}

DFT
dialog box

DSP

\section*{E}
excluded code Code that is ignored during compilation and execution. Excluded lines of code are displayed in a different color than included lines of code.

\section*{F}

FFT

FHT
Fast Fourier Transform

Fast Hartley Transform
FIR
finite impulse response
function panel \begin{tabular}{l}
A user interface to the LabWindows/CVI libraries in which you can \\
interactively execute library functions and generate code for inclusion in a \\
program.
\end{tabular}
function panel
window \(\quad\)\begin{tabular}{l}
A window that contains one or more function panels.
\end{tabular}

\section*{H}
\begin{tabular}{ll}
hex & hexadecimal \\
Hz & hertz \\
I & \\
IDFT & inverse Discrete Fourier Transform \\
IFFT & inverse Fast Fourier Transform \\
IFHT & inverse Fast Hartley Transform \\
IIR & infinite impulse response \\
in. & inches
\end{tabular}
input control A function panel control that accepts a value typed in from the keyboard. An input control can have a default value associated with it. This value appears in the control when the panel is first displayed.
input focus A mechanism for emphasis displayed on the screen as a highlight on an item, signifying that the item is active. User input affects the item in the dialog box that has the input focus.

Interactive Execution A LabWindows/CVI window in which sections of code may be executed window without creating an entire program.

\section*{K}
ksamples \(\quad 1,000\) samples

\section*{L}
. LFP file
A file containing information about the function tree and function panels for a LabWindows/CVI permanent library.
list box
A dialog box item that displays a list of possible choices.

\section*{M}

MB megabytes of memory
menu An area accessible from the command bar that displays a subset of the possible command choices.
mse mean squared error

\section*{0}
output control A function panel control that displays a value determined by the function you execute.

\section*{\(\mathbf{P}\)}

Project window A window that keeps track of the components that make up your current project. The Project window maintains a list of files such as source files, uir files, header files, or object modules, and also contains status information about each file in your project.
prompt command A command that requires additional information before it can be executed; a prompt command appears on a pull-down menu suffixed with three ellipses (...).

\section*{R}
return value control A function panel control that displays a value returned from a function as a return value rather than as a formal parameter.
rms root mean squared

\section*{S}
scroll bars
Areas along the bottom and right sides of a window that show your relative position in the file. Scroll bars can be used with a mouse to move about in the window.
scrollable text box A dialog box item that displays text in a scrollable display.
s
select
shortcut key
commands
seconds
To choose the item that the next executed action will affect by moving the input focus (highlight) to a particular item or area.

A combination of keystrokes that provide a means of executing a command without accessing a menu in the command bar.

Source window A LabWindows/CVI work area in which complete programs are edited and executed. This window is designated by the file extension .c.

Standard Input/
Output window
standard libraries

String Display

A LabWindows/CVI work area in which output to and input from the user take place.

The LabWindows/CVI Analysis, Formatting and I/O, GPIB/GPIB-488.2, RS-232, TCP/IP, DDE libraries and the ANSI C Library.

\section*{V}

V volts

Variable Display A display that shows the values of the variables that are currently defined in LabWindows/CVI.

\section*{Index}

\section*{Numbers}

1D array functions. See one-dimensional array operation functions.
1D complex operation functions. See onedimensional complex operation functions.
2D array functions. See two-dimensional array operation functions.

\section*{A}

Abs1D function, 2-1
ACDCEstimator function, 2-1 to 2-2
Add1D function, 2-2 to 2-3
Add2D function, 2-3
Advanced Analysis Library functions error codes
alphabetical list, A-1 to A-3
numeric list, A-4 to A-6
function panels
array operation functions, 1-2, 1-7
array utility functions, 1-8
complex operation
functions, 1-3, 1-7
curve fitting functions, 1-6, 1-8
function tree (table), 1-1 to 1-7
hints for using, 1-8 to 1-9
interpolation functions, 1-6, 1-8
measurement functions, 1-5, 1-8
signal generation functions, 1-1
to 1-2, 1-7
signal processing functions, 1-3
to 1-5, 1-7
statistics functions, 1-5 to 1-6, 1-8
vector and matrix algebra
functions, 1-6, 1-8
function reference
Abs1D, 2-1
ACDCEstimator, 2-1 to 2-2

Add1D, 2-2 to 2-3
Add2D, 2-3
AllocIIRFilterPtr, 2-5 to 2-6
AmpPhaseSpectrum, 2-4 to 2-5
ANOVA1Way, 2-6 to 2-11
ANOVA2Way, 2-11 to 2-19
ANOVA3Way, 2-20 to 2-29
ArbitraryWave, 2-30 to 2-31
AutoPowerSpectrum, 2-31 to 2-32
BackSub, 2-32 to 2-33
Bessel_CascadeCoef, 2-33 to 2-35
Bessel_Coef, 2-36 to 2-37
BkmanWin, 2-37
BlkHarrisWin, 2-36 to 2-37
Bw_BPF, 2-38
Bw_BSF, 2-39
BW_CascadeCoef, 2-40 to 2-41
Bw_Coef, 2-41 to 2-42
Bw_HPF, 2-42 to 2-43
Bw_LPF, 2-43 to 2-44
CascadeToDirectCoef, 2-44 to 2-45
Ch_BPF, 2-45 to 2-46
Ch_BSF, 2-46 to 2-47
Ch_CascadeCoef, 2-47 to 2-49
Ch_Coef, 2-49 to 2-50
Ch_HPF, 2-50 to 2-51
Chirp, 2-52 to 2-53
Ch_LPF, 2-51 to 2-52
Clear1D, 2-53
Clip, 2-54
Contingency_Table, 2-54 to 2-57
Convolve, 2-58 to 2-59
Copy1D, 2-59
Correlate, 2-59 to 2-60
CosTaperedWin, 2-60 to 2-61
CrossPowerSpectrum, 2-61 to 2-62
CrossSpectrum, 2-62 to 2-63
CxAdd, 2-63 to 2-64
CxAdd1D, 2-64 to 2-65
CxDiv, 2-65
CxDiv1D, 2-66

CxExp, 2-66 to 2-67
CxLn, 2-68
CxLog, 2-68 to 2-69
CxMul, 2-69
CxMul1D, 2-70
CxPow, 2-70 to 2-71
CxRecip, 2-71
CxSqrt, 2-72
CxSub, 2-72 to 2-73
CxSub1D, 2-73 to 2-74
Decimate, 2-74
Deconvolve, 2-75
Determinant, 2-76
Difference, 2-76 to 2-77
Div1D, 2-77 to 2-78
Div2D, 2-78
DotProduct, 2-79
Elp_BPF, 2-79 to 2-80
Elp_BSF, 2-80 to 2-81
Elp_CascadeCoef, 2-81 to 2-83
Elp_Coef, 2-83 to 2-84
Elp_HPF, 2-84 to 2-85
Elp_LPF, 2-85 to 2-86
Equi_Ripple, 2-86 to 2-89
EquiRpl_BPF, 2-89 to 2-90
EquiRpl_BSF, 2-91
EquiRpl_HPF, 2-92
EquiRpl_LPF, 2-93
ExBkmanWin, 2-94
ExpFit, 2-94 to 2-95
ExpWin, 2-96
F_Dist, 2-96 to 2-97
FFT, 2-97 to 2-98
FHT, 2-98 to 2-99
FIR_Coef, 2-99 to 2-100
FlatTopWin, 2-100
ForceWin, 2-101
ForwSub, 2-101 to 2-102
FreeIIRFilterPtr, 2-102 to 2-104
GaussNoise, 2-103 to 2-104
GenCosWin, 2-104
GenLSFit, 2-105 to 2-111
GenLSFitCoef, 2-112 to 2-113
GetAnalysisErrorString, 2-113
HamWin, 2-114
HanWin, 2-114 to 2-115

Histogram, 2-115 to 2-116
IIRCascadeFiltering, 2-116 to 2-117
IIRFiltering, 2-118 to 2-119
Impulse, 2-119 to 2-120
ImpulseResponse, 2-120
Integrate, 2-121
InvCh_BPF, 2-122
InvCh_BSF, 2-123
InvCh_CascadeCoef, 2-124 to 2-125
InvCh_Coef, 2-125 to 2-126
InvCh_HFP, 2-126 to 2-127
InvCh_LPF, 2-127 to 2-128
InvF_Dist, 2-128 to 2-129
InvFFT, 2-129 to 2-130
InvFHT, 2-130 to 2-131
InvMatrix, 2-131 to 2-132
InvN_Dist, 2-132
InvT_Dist, 2-133
InvXX_Dist, 2-133 to 2-134
Ksr_BPF, 2-134 to 2-135
Ksr_BSF, 2-136 to 2-137
Ksr_HPF, 2-137 to 2-138
Ksr_LPF, 2-138 to 2-139
Ksr_Win, 2-139 to 2-140
LinEqs, 2-140 to 2-141
LinEv1D, 2-141 to 2-142
LinEv2D, 2-142 to 2-143
LinFit, 2-143 to 2-144
LU, 2-144 to 2-145
MatrixMul, 2-145 to 2-146
MaxMin1D, 2-146 to 2-147
MaxMin2D, 2-147 to 2-148
Mean, 2-148
Median, 2-149
Mode, 2-149 to 2-150
Moment, 2-150 to 2-151
Mul1D, 2-151 to 2-152
Mul2D, 2-152
N-Dist, 2-153
Neg1D, 2-153 to 2-154
NetworkFunctions, 2-154 to 2-156
NonLinearFit, 2-156 to 2-157
Normal1D, 2-157 to 2-158
Normal2D, 2-158 to 2-159
PolyEv1D, 2-159 to 2-160
PolyEv2D, 2-160 to 2-161

PolyFit, 2-162 to 2-163
PolyInterp, 2-163 to 2-164
PowerFrequencyEstimate, 2-164
to 2-166
Prod1D, 2-166 to 2-167
Pulse, 2-167 to 2-168
PulseParam, 2-168 to 2-169
QScale1D, 2-170
QScale2D, 2-170 to 2-171
Ramp, 2-171 to 2-172
RatInterp, 2-172 to 2-173
ReFFT, 2-174
ReInvFFT, 2-175
ResetIIRFilter, 2-176
Reverse, 2-177
RMS, 2-177 to 2-178
SawtoothWave, 2-178 to 2-179
Scale1D, 2-179
Scale2D, 2-180
ScaledWindow, 2-181 to 2-182
Set1D, 2-182 to 2-183
Shift, 2-183 to 2-184
Sinc, 2-184
SinePattern, 2-185
SineWave, 2-186 to 2-187
Sort, 2-187
Spectrum, 2-188
SpectrumUnitConversion, 2-188 to 2-191
SpInterp, 2-192 to 2-193
Spline, 2-193 to 2-194
SquareWave, 2-194 to 2-195
StdDev, 2-196
Sub1D, 2-196 to 2-197
Sub2D, 2-197 to 2-198
Subset1D, 2-198
Sum1D, 2-199
Sum2D, 2-199 to 2-200
T_Dist, 2-200 to 2-201
ToPolar, 2-201
ToPolar1D, 2-202
ToRect, 2-203
ToRect1D, 2-203 to 2-204
Trace, 2-204
TransferFunction, 2-205 to 2-206
Transpose, 2-206

Triangle, 2-206 to 2-207
TriangleWave, 2-207 to 2-208
TriWin, 2-208 to 2-209
Uniform, 2-209
UnWrap1D, 2-210
Variance, 2-210 to 2-211
WhiteNoise, 2-211 to 2-212
Wind_BPF, 2-212 to 2-213
Wind_BSF, 2-213 to 2-215
Wind_HPF, 2-215 to 2-216
Wind_LPF, 2-216 to 2-217
XX_Dist, 2-218
AllocIIRFilterPtr function, 2-5 to 2-6
AmpPhaseSpectrum function, 2-4 to 2-5
analysis of variance functions
ANOVA1Way, 2-3
ANOVA2Way, 2-11 to 2-19
ANOVA3Way, 2-19 to 2-29
definition, 1-8
function tree, 1-6
ANOVA1Way function, 2-3
ANOVA2Way function, 2-11 to 2-19
ANOVA3Way function, 2-19 to 2-29
ArbitraryWave function, 2-30 to 2-31
array analysis operations
definition, 1-7
performing analysis operations in place, 1-9
array operation functions
Abs1D, 2-1
Add1D, 2-2 to 2-3
Add2D, 2-3
definition, 1-7
Div1D, 2-77 to 2-78
Div2D, 2-78
function tree, 1-2
LinEv1D, 2-141 to 2-142
LinEv2D, 2-142 to 2-143
MaxMin1D, 2-146 to 2-147
MaxMin2D, 2-147 to 2-148
Mul1D, 2-151 to 2-152
Mul2D, 2-152
Neg1D, 2-153 to 2-154
PolyEv1D, 2-159 to 2-160
PolyEv2D, 2-160 to 2-161
Prod1D, 2-166 to 2-167

QScale1D, 2-170
QScale2D, 2-170 to 2-171
Scale1D, 2-179
Scale2D, 2-180
Sub1D, 2-196 to 2-197
Sub2D, 2-197 to 2-198
Subset1D, 2-198
Sum1D, 2-199
Sum2D, 2-199 to 2-200
array utility functions
Clear1D, 2-53
Copy1D, 2-59
definition, 1-8
function tree, 1-8
Set1D, 2-182 to 2-183
UnWrap1D, 2-210
AutoPowerSpectrum function, 2-31 to 2-32

\section*{B}

BackSub function, 2-32 to 2-33
basic statistics functions
definition, 1-8
function tree, 1-5 to 1-6
Histogram, 2-115 to 2-116
Mean, 2-148
Median, 2-149
Mode, 2-149 to 2-150
Moment, 2-150 to 2-151
RMS, 2-177 to 2-178
StdDev, 2-196
Variance, 2-210 to 2-211
Bessel_CascadeCoef function, 2-33 to 2-35
Bessel_Coef function, 2-36 to 2-37
BkmanWin function, 2-37
BlkHarrisWin function, 2-36 to 2-37
Bw_BPF function, 2-38
Bw_BSF function, 2-39
BW_CascadeCoef function, 2-40 to 2-41
Bw_Coef function, 2-41 to 2-42
Bw_HPF function, 2-42 to 2-43
Bw_LPF function, 2-43 to 2-44

C
CascadeToDirectCoef function, 2-44 to 2-45
Ch_BPF function, 2-45 to 2-46
Ch_BSF function, 2-46 to 2-47
Ch_Coef function, 2-49 to 2-50
Ch_HPF function, 2-50 to 2-51
Ch_LPF function, 2-51 to 2-52
Ch_CascadeCoef function, 2-47 to 2-49
Chirp function, 2-52 to 2-53
chi-square tests, \(2-55\) to \(2-56\)
Clear1D function, 2-53
Clip function, 2-54
complex operation functions
CxAdd, 2-63 to 2-64
CxAdd1D, 2-64 to 2-65
CxDiv, 2-65
CxDiv1D, 2-66
CxExp, 2-66 to 2-67
CxLinEv1D, 2-67 to 2-68
CxLn, 2-68
CxLog, 2-68 to 2-69
CxMul, 2-69
CxMul1D, 2-70
CxPow, 2-70 to 2-71
CxRecip, 2-71
CxSqrt, 2-72
CxSub, 2-72 to 2-73
CxSub1D, 2-73 to 2-74
definition, 1-7
function tree, 1-3
ToPolar, 2-201
ToPolar1D, 2-202
ToRect, 2-203
ToRect1D, 2-203 to 2-204
Contingency_Table function, 2-54 to 2-57
Convolve function, 2-58 to 2-59
Copy1D function, 2-59
Correlate function, 2-59 to 2-60
CosTaperedWin function, 2-60 to 2-61
CrossPowerSpectrum function, 2-61 to 2-62
CrossSpectrum function, 2-62 to 2-63
curve fitting, 1-18
curve fitting functions
definition, 1-8
ExpFit, 2-94 to 2-95
function tree, 1-6
GenLSFit, 2-105 to 2-111
GenLSFitCoef, 2-112 to 2-113
LinFit, 2-143 to 2-144
NonLinearFit, 2-156 to 2-157
PolyFit, 2-162 to 2-163
customer communication, xiv, B-1 to B-2
CxAdd function, 2-63 to 2-64
CxAdd1D function, 2-64 to 2-65
CxDiv function, 2-65
CxDiv1D function, 2-66
CxExp function, 2-66 to 2-67
CxLinEv1D function, 2-67 to 2-68
CxLn function, 2-68
CxLog function, 2-68 to 2-69
CxMul function, 2-69
CxMul1D function, 2-70
CxPow function, 2-70 to 2-71
CxRecip function, 2-71
CxSqrt function, 2-72
CxSub function, 2-72 to 2-73
CxSub1D function, 2-73 to 2-74

\section*{D}

Decimate function, 2-74
Deconvolve function, 2-75
Determinant function, 2-76
Difference function, 2-76 to 2-77
digital filters. See FIR filters; IIR filters.
Discrete Fourier Transform (DFT), 1-9
to \(1-10\)
Div1D function, 2-77 to 2-78
Div2D function, 2-78
documentation
conventions used in manual, xi-xii
organization of manual, \(x i\)
related documentation, xii-xiii
DotProduct function, 2-79

\section*{E}
electronic support services, B-1 to B-2
Elp_BPF function, 2-79 to 2-80
Elp_BSF function, 2-80 to 2-81
Elp_CascadeCoef function, 2-81 to 2-83
Elp_Coef function, 2-83 to 2-84
Elp_HPF function, 2-84 to 2-85
Elp_LPF function, 2-85 to 2-86
e-mail support, B-2
Equi_Ripple function
description, 2-86 to 2-89
designing FIR filters, 1-14
examples, 2-87 to 2-89
problems with convergence (caution), 1-14
EquiRpl_BPF function, 2-89 to 2-90
EquiRpl_BSF function, 2-91
EquiRpl_HPF function, 2-92
EquiRpl_LPF function, 2-93
error codes
alphabetical list, A-1 to A-3
numeric list, A-4 to A-6
errors
converting error number with GetAnalysisErrorString function, 2-113
reporting analysis errors, 1-9
ExBkmanWin function, 2-94
ExpFit function, 2-94 to 2-95
ExpWin function, 2-96

\section*{F}

Fast Fourier Transform (FFT), 1-9 to 1-10. See also frequency domain functions.
fax and telephone support, B-2
faxback support, B-1
F_Dist function, 2-96 to 2-97
FFT function, 2-97 to 2-98
FHT function, 2-98 to 2-99
finite impulse response functions. See FIR digital filter functions; FIR filters.
FIR digital filter functions
definition, 1-7

FIR_Coef, 2-99 to 2-100
function tree, 1-4 to 1-5
Ksr_BPF, 2-134 to 2-135
Ksr_BSF, 2-136 to 2-137
Ksr_HPF, 2-137 to 2-138
Ksr_LPF, 2-138 to 2-139
Wind_BPF, 2-212 to 2-213
Wind_BSF, 2-213 to 2-215
Wind_HPF, 2-215 to 2-216
Wind_LPF, 2-216 to 2-217
FIR filters
compared with IIR filters, 1-13
definition, 1-13
designing, 1-14
FIR_Coef function, 2-99 to 2-100
FlatTopWin function, 2-100
ForceWin function, 2-101
ForwSub function, 2-101 to 2-102
Fourier Transform integral, 1-9
FPT support, B-2
FreeIIRFilterPtr function, 2-102 to 2-104
frequency domain functions
conventions and restrictions related to
Fast Fourier Transform, 1-10
CrossSpectrum, 2-62 to 2-63
definition, 1-7
FFT, 2-97 to 2-98
FHT, 2-98 to 2-99
function tree, 1-3
InvFFT, 2-129 to 2-130
InvFHT, 2-130 to 2-131
notation for describing Fast Fourier
Transform operations, 1-10
ReFFT, 2-174
ReInvFFT, 2-175
Spectrum, 2-188
function panels. See under Advanced Analysis Library.

\section*{G}

GaussNoise function, 2-103 to 2-104
GenCosWin function, 2-104
generated code stored in Interactive window, 1-9
GenLSFit function, 2-105 to 2-111
GenLSFitCoef function, 2-112 to 2-113
GetAnalysisErrorString function, 2-113

\section*{H}

HamWin function, 2-114
HanWin function, 2-114 to 2-115
Histogram function, 2-115 to 2-116

\section*{I}

IEW. See Interactive Execution window. IIR digital filter functions

AllocIIRFilterPtr, 2-5 to 2-6
Bessel_CascadeCoef, 2-33 to 2-35
Bessel_Coef, 2-36 to 2-37
Bw_BPF, 2-38
Bw_BSF, 2-39
BW_CascadeCoef, 2-40 to 2-41
Bw_Coef, 2-41 to 2-42
Bw_HPF, 2-42 to 2-43
Bw_LPF, 2-43 to 2-44
CascadeToDirectCoef, 2-44 to 2-45
Ch_BPF, 2-45 to 2-46
Ch_BSF, 2-46 to 2-47
Ch_CascadeCoef, 2-47 to 2-49
Ch_Coef, 2-49 to 2-50
Ch_HPF, 2-50 to 2-51
Ch_LPF, 2-51 to 2-52
definition, 1-7
Elp_BPF, 2-79 to 2-80
Elp_BSF, 2-80 to 2-81
Elp_CascadeCoef, 2-81 to 2-83
Elp_Coef, 2-83 to 2-84
Elp_HPF, 2-84 to 2-85
Elp_LPF, 2-85 to 2-86
Equi_Ripple, 2-86 to 2-89

EquiRpl_BPF, 2-89 to 2-90
EquiRpl_BSF, 2-91
EquiRpl_HPF, 2-92
EquiRpl_LPF, 2-93
FreeIIRFilterPtr, 2-102 to 2-104
function tree, 1-4
IIRCascadeFiltering, 2-116 to 2-117
IIRFiltering, 2-118 to 2-119
InvCh_BPF, 2-122
InvCh_BSF, 2-123
InvCh_CascadeCoef, 2-124 to 2-125
InvCh_Coef, 2-125 to 2-126
InvCh_HFP, 2-126 to 2-127
InvCh_LPF, 2-127 to 2-128
ResetIIRFilter, 2-176
IIR filters, 1-14 to 1-16
cascaded filter stages, 1-15
compared with FIR filters, 1-13
direct form, 1-14 to 1-15
fourth order, 1-16
mathematical form, 1-14
second order, 1-15
types, 1-16
IIRCascadeFiltering function, 2-116
to 2-117
IIRFiltering function, 2-118 to 2-119
Impulse function, 2-119 to 2-120
ImpulseResponse function, 2-120
infinite impulse response functions. See IIR
digital filter functions; IIR filters.
Integrate function, 2-121
Interactive Execution window, 1-9
interpolation functions
definition, 1-8
function tree, 1-6
PolyInterp, 2-163 to 2-164
RatInterp, 2-172 to 2-173
SpInterp, 2-192 to 2-193
Spline, 2-193 to 2-194
InvCh_BPF function, 2-122
InvCh_BSF function, 2-123
InvCh_CascadeCoef function, 2-124 to 2-125
InvCh_Coef function, 2-125 to 2-126
InvCh_HFP function, 2-126 to 2-127
InvCh_LPF function, 2-127 to 2-128

InvF_Dist function, 2-128 to 2-129
InvFFT function, 2-129 to 2-130
InvFHT function, 2-130 to 2-131
InvMatrix function, 2-131 to 2-132
InvN_Dist function, 2-132
InvT_Dist function, 2-133
InvXX_Dist function, 2-133 to 2-134

\section*{K}

Ksr_BPF function, 2-134 to 2-135
Ksr_BSF function, 2-136 to 2-137
Ksr_HPF function, 2-137 to 2-138
Ksr_LPF function, 2-138 to 2-139
Ksr_Win function, 2-139 to 2-140

\section*{L}

LinEqs function, 2-140 to 2-141
LinEv1D function, 2-141 to 2-142
LinEv2D function, 2-142 to 2-143
LinFit function, 2-143 to 2-144
LU function, 2-144 to 2-145

\section*{M}
manual. See documentation.
matrix algebra functions. See vector and matrix algebra functions.
MatrixMul function, 2-145 to 2-146
MaxMin1D function, 2-146 to 2-147
MaxMin2D function, 2-147 to 2-148
Mean function, 2-148
measurement functions
ACDCEstimator, 2-1 to 2-2
AmpPhaseSpectrum, 2-4 to 2-5
AutoPowerSpectrum, 2-31 to 2-32
characteristics, 1-17 to 1-18
CrossPowerSpectrum, 2-61 to 2-62
definition, 1-8
function tree, 1-5
ImpulseResponse, 2-120
NetworkFunctions, 2-154 to 2-156

PowerFrequencyEstimate, 2-164 to 2-166
purpose and use, 1-17
ScaledWindow, 2-181 to 2-182
SpectrumUnitConversion, 2-188 to 2-191
TransferFunction, 2-205 to 2-206
Median function, 2-149
Mode function, 2-149 to 2-150
Moment function, 2-150 to 2-151
Mul1D function, 2-151 to 2-152
Mul2D function, 2-152

\section*{N}

N-Dist function, 2-153
Neg1D function, 2-153 to 2-154
NetworkFunctions function, 2-154 to 2-156
NonLinearFit function, 2-156 to 2-157
nonparametric statistics function
Contingency_Table, 2-54 to 2-57
definition, 1-8
function tree, 1-6
Normal1D function, 2-157 to 2-158
Normal2D function, 2-158 to 2-159

\section*{0}
one-dimensional array operation functions
Abs1D, 2-1
Add1D, 2-2 to 2-3
definition, 1-7
Div1D, 2-77 to 2-78
function tree, 1-2
LinEv1D, 2-141 to 2-142
MaxMin1D, 2-146 to 2-147
Mul1D, 2-151 to 2-152
Neg1D, 2-153 to 2-154
PolyEv1D, 2-159 to 2-160
Prod1D, 2-166 to 2-167
QScale1D, 2-170
Scale1D, 2-179
Sub1D, 2-196 to 2-197
Subset1D, 2-198

Sum1D, 2-199
Sum2D, 2-199 to 2-200
one-dimensional complex operation
functions
CxAdd1D, 2-64 to 2-65
CxDiv1D, 2-66
CxLinEv1D, 2-67 to 2-68
CxMul1D, 2-70
CxSub1D, 2-73 to 2-74
definition, 1-7
function tree, 1-3
ToPolar1D, 2-202
ToRect1D, 2-203 to 2-204

\section*{P}
performance considerations, analysis
functions, 1-9
PolyEv1D function, 2-159 to 2-160
PolyEv2D function, 2-160 to 2-161
PolyFit function, 2-162 to 2-163
PolyInterp function, 2-163 to 2-164
PowerFrequencyEstimate function, 2-164
to 2-166
probability distribution functions
definition, 1-8
F_Dist, 2-96 to 2-97
function tree, 1-6
InvF_Dist, 2-128 to 2-129
InvN_Dist, 2-132
InvT_Dist, 2-133
InvXX_Dist, 2-133 to 2-134
N-Dist, 2-153
T_Dist, 2-200 to 2-201
XX_Dist, 2-218
Prod1D function, 2-166 to 2-167
Pulse function, 2-157 to 2-168
PulseParam function, 2-168 to 2-169

\section*{Q}

QScale1D function, 2-170
QScale2D function, 2-170 to 2-171

\section*{R}

Radix-4 and Radix-8 algorithms, 1-10
Ramp function, 2-171 to 2-172
RatInterp function, 2-172 to 2-173
ReFFT function, 2-174
ReInvFFT function, 2-175
ResetIIRFilter function, 2-176
Reverse function, 2-177
RMS function, 2-177 to 2-178

\section*{S}

SawtoothWave function, 2-178 to 2-179
Scale1D function, 2-179
Scale2D function, 2-180
ScaledWindow function, 2-181 to 2-182
Set1D function, 2-182 to 2-183
Shift function, 2-183 to 2-184
signal generation functions
ArbitraryWave, 2-30 to 2-31
Chirp, 2-52 to 2-53
definition, 1-7
function tree, 1-1 to 1-2
GaussNoise, 2-103 to 2-104
Impulse, 2-119 to 2-120
Pulse, 2-157 to 2-168
Ramp, 2-171 to 2-172
SawtoothWave, 2-178 to 2-179
Sinc, 2-184
SinePattern, vi all;2-1
SineWave, 2-186 to 2-187
SquareWave, 2-194 to 2-195
Triangle, 2-206 to 2-207
TriangleWave, 2-207 to 2-208
Uniform, 2-209
WhiteNoise, 2-211 to 2-212
signal processing functions. See FIR digital
filter functions; frequency domain
functions; IIR digital filter functions; time domain functions; windows functions.
Sinc function, 2-184
SinePattern function, vi all;2-1
SineWave function, 2-186 to 2-187
Sort function, 2-187
source file code stored in Interactive window, 1-9
Spectrum function, 2-188
SpectrumUnitConversion function, 2-188 to 2-191
SpInterp function, 2-192 to 2-193
Spline function, 2-193 to 2-194
Split-Radix algorithm, 1-10
SquareWave function, 2-194 to 2-195
statistics functions
ANOVA1Way, 2-3
ANOVA2Way, 2-11 to 2-19
ANOVA3Way, 2-20 to 2-29
Contingency_Table, 2-54 to 2-57
definition, 1-8
F_Dist, 2-96 to 2-97
function tree, 1-5 to 1-6
GenLSFit, 2-105 to 2-111
Histogram, 2-115 to 2-116
InvF_Dist, 2-128 to 2-129
InvN_Dist, 2-132
InvT_Dist, 2-133
InvXX_Dist, 2-133 to 2-134
Mean, 2-148
Median, 2-149
Mode, 2-149 to 2-150
Moment, 2-150 to 2-151
N-Dist, 2-153
RMS, 2-177 to 2-178
Sort, 2-187
StdDev, 2-196
T_Dist, 2-200 to 2-201
Variance, 2-210 to 2-211
XX_Dist, 2-218
StdDev function, 2-196
Sub1D function, 2-196 to 2-197
Sub2D function, 2-197 to 2-198
Subset1D function, 2-198
Sum1D function, 2-199
Sum2D function, 2-199 to 2-200

\section*{T}

T_Dist function, 2-200 to 2-201
technical support, B-1 to B-2
time domain functions
Clip, 2-54
Convolve, 2-58 to 2-59
Correlate, 2-59 to 2-60
Decimate, 2-74
Deconvolve, 2-75
definition, 1-7
Difference, 2-76 to 2-77
function tree, 1-3 to 1-4
Integrate, 2-121
PulseParam, 2-168 to 2-169
Reverse, 2-177
Shift, 2-183 to 2-184
ToPolar function, 2-201
ToPolar1D function, 2-202
ToRect function, 2-203
ToRect1D function, 2-203 to 2-204
Trace function, 2-204
TransferFunction function, 2-205 to 2-206
Transpose function, 2-206
Triangle function, 2-206 to 2-207
TriangleWave function, 2-207 to 2-208
TriWin function, 2-208 to 2-209
two-dimensional array operation functions
Add2D, 2-3
definition, 1-7
Div2D, 2-78
function tree, 1-2
LinEv2D, 2-142 to 2-143
MaxMin2D, 2-147 to 2-148
Mul2D, 2-152
PolyEv2D, 2-160 to 2-161
QScale2D, 2-170 to 2-171
Scale2D, 2-180
Sub2D, 2-197 to 2-198

\section*{U}

Uniform function, 2-209
UnWrap1D function, 2-210

\section*{V}

Variance function, 2-210 to 2-211
vector and matrix algebra functions
BackSub, 2-32 to 2-33
definition, 1-8
Determinant, 2-76
DotProduct, 2-79
ForwSub, 2-101 to 2-102
function tree, 1-6
InvMatrix, 2-131 to 2-132
LinEqs, 2-140 to 2-141
LU, 2-144 to 2-145
MatrixMul, 2-145 to 2-146
Normal1D, 2-157 to 2-158
Normal2D, 2-158 to 2-159
Trace, 2-204
Transpose, 2-206

\section*{W}

WhiteNoise function, 2-211 to 2-212
Wind_BPF function, 2-212 to 2-213
Wind_BSF function, 2-213 to 2-215
Wind_HPF function, 2-215 to 2-216
Wind_LPF function, 2-216 to 2-217
windowing, 1-11 to 1-13
windows functions
BkmanWin, 2-37
BlkHarrisWin, 2-36 to 2-37
CosTaperedWin, 2-60 to 2-61
definition, 1-7
ExBkmanWin, 2-94
ExpWin, 2-96
FlatTopWin, 2-100
ForceWin, 2-101
function tree, 1-5
GenCosWin, 2-104
HamWin, 2-114

HanWin, 2-114 to 2-115
Ksr_Win, 2-139 to 2-140
TriWin, 2-208 to 2-209
WindType parameter, 1-13 to 1-14

X
XX_Dist function, 2-218```

